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Abstract

In our model, an entrant has two beneficial strategies: collaboration with in-
cumbents and location choice. We analyze the effect of allowing an entrant the
opportunity to collaborate with incumbents on its location choice. First, we show
that when collaboration requires mutual consent, the entrant has an incentive to
distort its location from a welfare viewpoint to collaborate with incumbents and
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ways be a device that deters entry, depending on the magnitude of the collaboration
effect.
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1 Introduction

This paper examines a case in which an entrant has two beneficial strategies: collaboration
with incumbents and location choice. In particular, we analyze the effect of allowing an
entrant the opportunity to collaborate with incumbents on the choice of location.
It is not rare for entrants to use collaboration with incumbents as a strategic tool.

When an entrant has a broad distribution channel or excellent technology for the produc-
tion of an input that is used to produce a final good, the entrant may easily collaborate
with incumbents in the final good market by sharing its knowledge with the incumbent.
For example, Samsung, which already possessed a broad distribution channel and top-
class technology in the semiconductor market, collaborated with Sony when it entered
the LCD market and with Seagate when it entered the hard-disk market. Facilitating an
entrant’s collaboration with incumbents seems to be justified by the improvement in in-
formation technology, such as the prevalence of the Internet or cloud-computing systems.
This is because the Internet increases the frequency of contacts, and cloud-computing
systems induce the common use of network systems among firms.
To understand better the issues discussed in this paper, suppose two retail shops are

located at the two extreme ends of a line city. The shops have the same retail technology,
engage in price competition, and obtain some positive profits. Now, assume that an
outsider plans to open a shop in the same city. The two incumbent retail shops may
collaborate with each other to deter the entry of a new competitor. If the incumbents
collaborate with each other, they lower their resale costs by sharing some facilities, such as
production plants, storehouses, or distribution channels. However, assume that once the
outsider opens a shop, it will be allowed to collaborate with the incumbent retail shops.
In such a case, where would the outsider choose to locate a shop in the city? Would it be
easy for the outsider to open its shop in the city?1

Using the standard setting of a Hotelling model, we propose a curious answer to these
questions: Once the outsider enters the market, it does not always locate at the center of
the line (or it does not always maximally horizontally differentiate its goods from those
of the incumbents). That is, its location is distorted towards the location of one of the
two incumbents. Moreover, collaboration between the two incumbents to reduce their
production cost cannot always deter a competitor’s entry. In fact, the outsider may be
welcomed to the market, even when the incumbents have collaborated on an entry barrier.
Let us restate this answer in detail. In our model, we define a collaboration of firms as

a pairwise link between firms with mutual consent. First, we show that when an entrant
is allowed to form a link and the link formation requires mutual consent, the entrant has
an incentive to distort its location to form a link with each of the incumbents. Second, we
show that the existing link formed by the incumbents cannot be a device to deter entry
when the incremental change of the cost-reducing effect generated by forming that link
scarcely depends on the number of links.
These two results are produced by two driving forces: the cost-reducing effect, which is

a direct effect generated by the network formation, and the price-competition effect, which

1Needless to say, the location choice in this example can be replaced by a choice of a product charac-
teristic such as the color of the product.
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is a mixed effect generated by the network formation and the entrant’s location choice.
Suppose that an entrant tries to form a link with an incumbent. The cost-reducing effect
works positively for both the entrant and the incumbent, which implies that competition in
the product market becomes fiercer with the link than without it. The entrant’s location
choice can also affect the fierceness of the product market competition. The entrant’s
location choice affects the relative magnitude between the cost-reducing effect and the
price-competition effect, which in turn determines the success probability of forming a
link. Hence, the entrant has an incentive to distort its location to obtain the incumbent’s
agreement to form the link. We will explain the details of the mechanism in the following
analysis.
The crucial prerequisite for our results is that both the incumbents and the entrant

have an opportunity to form a link once the entrant enters the market. In fact, we verify in
the following analysis that when only the incumbents have an opportunity to form a link,
the entrant undoubtedly locates at the center of the line (i.e., it maximally horizontally
differentiates its product from those of the incumbents). In addition, we see in that case
that the link between the incumbents can always be an effective tool for deterring entry.
The previous studies by Goyal and Moraga-González (2001), Goyal and Joshi (2003),

and Deroian and Gannon (2006) relate most closely to this paper in the sense that they
deal with the relationship between strategic network formation with bilateral agreements
between rival firms and their market competition.2 Goyal and Moraga-González employ
the three-stage game in which firms choose a R&D effort for cost reduction after a network
structure is established, and the market competition follows in the final stage. They
examine the effects of market rivalry and spillovers on network structure. Goyal and
Joshi also address the relationship between a firm’s incentive to form a network and
the nature of market competition. Deroian and Gannon restrict their attention more to
the effect of spillovers on network structure by assuming that a R&D effort contributes to
quality improvement.3 In contrast to these three studies, our main issue is the relationship
between a potential entrant’s two beneficial strategies, i.e., collaboration with incumbents
and location choice, and their effects on its capability for entry when the network formation
with bilateral agreements affects the market competition among rival firms.
Using a repeated game framework, Friedman and Thisse (1993) examines the rela-

tionship between collaboration among firms and their location choices. They show that
partial tacit collusion on price fosters minimum product differentiation (i.e., the firms’
agglomeration). Our study differs from that of Friedman and Thisse in that we consider
not only the threat of potential entry but also the possibility of collaborative networks
that include entrants in a horizontal product differentiation model.4

2For the basic notions and applications of strategic network formation with pairwise links, see Goyal
(2007) and Jackson (2008).

3Another interesting application of strategic network models to market competition is by Song and
Vannetelbosch (2007), who analyze the effect of government policies on the stability and efficiency of
networks of R&D collaboration among firms.

4Okumura (2011) deals with an endogenous formation of collaborative networks in a spacial model.
Within the framework of a circular model, however, his main focus is the characterization of networks in
equilibrium, given the number of firms and each firm’s location. In contrast to his study, this paper deals
with the relationship between endogenously formed networks and a firm’s location choice.
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The next section describes the framework of the model. In Section 3, we first charac-
terize the pairwise stable networks, taking a potential entrant’s entry and its location as
given. We then analyze an entrant’s location choice and the feasibility of entry under the
derived pairwise stable networks. Concluding remarks are in Section 4.

2 The Model

We examine a linear Hotelling model with two incumbents, firm 1 and firm 2, and one
potential entrant, firm e. Consumers are uniformly distributed on the interval [0, 1] with
a mass of 1. Firm 1 is located at the left end, 0, while firm 2 is at the right end, 1; the
incumbents’ goods are maximally horizontally differentiated. Once firm e decides to enter
the market by incurring an entry sunk cost, F , it can choose its location, a.
All of the firms sell the good, whose reservation value for each consumer is v.5 Each

consumer buys a single unit of the good from one of the firms. Then, the utility of a
consumer located at θ is represented by

u (pi; θ) = v − (θ − si)2 t− pi,

where si is the location of firm i (i = 1, 2, e), t is the parameter of the quadratic
transportation cost incurred by the consumer, and pi is the price set by firm i.
Our model departs from the existing literature by allowing the firms to collaborate

with other firms in the market. In particular, a firm has an opportunity to form a pairwise
collaborative link with one of the other firms in the market. Moreover, we assume that
firm i’s constant marginal cost of production, ci, is represented by a function of the number
of the collaborative links. That is,

ci = c (ηi (g)) ,

where ηi (g) is the number of pairwise links that firm i has with the other firms in the
network g. Here, a network represents a structure of the pairwise links in the market.
For example, if we see a network, eg, where firm e forms a pairwise link with firm 1 after
it enters the market and firm 1 also forms a pairwise link with firm 2, we state that
η1 (eg) = 2, η2 (eg) = 1, and ηe (eg) = 1. We also assume that a pairwise link has an effect
of lowering the marginal cost of production as follows:

c (0) > c (1) > c (2) .

That is, a firm’s marginal cost is strictly decreasing in the number of pairwise links. Note
that the marginal cost depends only on the number of links, not on the distance between
the two firms that form a link. This means that a firm’s marginal cost is independent of
its location choice.6

5We assume that v is sufficiently high so that all consumers buy the good from one of the firms.
6We follow Goyal and Joshi (2003) regarding the formulation of the cost-reducing effect through

collaborative links between firms. Note that this formulation excludes the possibility of spillovers. That
is, the marginal cost does not depend on the number of links that a neighbor firm (i.e., a firm that consists
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To derive equilibrium networks, we use a concept of pairwise stability attributed to
Jackson and Wolinsky (1996). In particular, a network, g, is said to be pairwise stable if
any firm that is linked to another in the network has a strict incentive to maintain the
link, and any two firms that are not linked have no strict incentive to form a link with
each other. Pairwise stability captures the idea of mutual consent. In the next section,
we introduce the formal definition of pairwise stability in our model. Moreover, to predict
which networks are likely to emerge and refine the set of pairwise stable networks, we use
a dynamic process for network formation, the details of which will be also explained in
the next section.
In the following analysis, we restrict our attention to an interior solution in which

all three firms can obtain a positive demand and a positive profit after firm e’s entry,
irrespective of the type of network that is established. To do so, we must make some
assumptions, because we generically examine an oligopoly with firms that may have dif-
ferent marginal costs through a link formation. The following assumption is required to
restrain the cost differentials among firms.

Assumption 1 (i) ∆0 < (3/5) t, (ii) ∆1 < (3/4) t.

In (i) and (ii) of the above assumption, ∆0 and ∆1 represent the (production) cost dif-
ferentials among firms. In particular, ∆0 ≡ c (0)− c (1) and ∆1 ≡ c (1)− c (2). In other
words, ∆0 (resp. ∆1) represents the cost-reducing effect of the first (resp. second) link
formed. Assumption 1 requires that the cost-reducing effects of the first and second links
are not large relative to each consumer’s (unit) transportation cost. This assumption is
necessary for the existence of the interior solution, because the monopolization or the
duopolization can occur in our Hotelling model only when a cost differential among firms
is large.7 In fact, under Assumption 1, the interior solution is guaranteed as long as firm e
chooses its location from the range of [1− a (t) , a (t)], where a (t) is defined as follows.8 ,9

a (t) ≡ min
n
1− (2∆0/ (3t−∆0)) ,

³
1 +

p
1− (4∆0/3t)

´
/2, 1− (2∆1/3t)

o
.

If t approaches∞, a (t) approaches 1. To focus on the interior solution, we assume that a
is chosen from 1− a (t) to a (t). In reality, this assumption seems to be justified, because
an entrant cannot locate too close to an incumbent because of some factors, such as the
existence of loyal consumers who favor the incumbent’s goods, and so on. The analytical
results derived in the next section are ensured as long as t is sufficiently large.

of a pair to a particular firm) has. See the concluding remarks on this point in Section 4.
7Matsumura and Matsushima (2009) and Meza and Tombak (2009) examine the effect of cost differ-

entials among firms in a Hotelling model, which is called an asymmetric duopoly model.
8a (t) is easy to derive by the following procedure. First, given a network, g, and firm e’s location, a,

we obtain conditions under which all three firms have a positive demand and a positive profit in the third
stage. Second, comparing the conditions derived under all networks and using Assumption 1, we derive
the upper bound of firm e’s location, a (t), that is a sufficient condition for the existence of the interior
solution.

9If we allow firm e to choose a ∈ (0, a (t)) ∪ (a (t) , 1), we cannot only guarantee the interior solution
but also the existence of any type of location equilibrium in pure strategies. The proof of this point is
available upon request.
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The timing of the game is as follows. In the first stage, firm e decides whether or
not to enter the market by incurring an entry sunk cost, F . Once it decides to enter,
it also determines its location, a. In the second stage, all firms in the market determine
their pairwise links, which means that each firm’s marginal cost is determined in this
stage. Then, we derive the equilibrium network structures among firms in the market by
adopting the concept of pairwise stability with a dynamic process, the details of which
are explained in the next section. In the third stage, the firms compete in price (i.e.,
Bertrand competition) and consumers buy goods from one of the firms in the market.

3 The Equilibrium

In this section, we derive the equilibrium by using a backward induction argument.

3.1 Bertrand competition

We examine the outcome of Bertrand competition in the third stage, given firm e’s loca-
tion, a, in a type of network structure.
Suppose firm e enters and chooses a. Restricting our attention to an interior solution

in which all three firms can obtain a positive demand and a positive profit in equilibrium,
we denote a consumer who is indifferent between buying from firm 1 and buying from
firm e by θ1e ∈ (0, a). Then, we have

v − θ21et− p1 = v − (a− θ1e)
2 t− pe

or θ1e =
pe − p1
2at

+
a

2
.

Similarly, denoting a consumer who is indifferent between buying from firm 2 and buying
from firm e by θe2 ∈ (a, 1), we have

v − (θe2 − a)2 t− pe = v − (1− θe2)
2 t− p2

or θe2 =
p2 − pe
2 (1− a) t +

1 + a

2
.

Then, the firms’ respective demands are

D1 (p1, pe) = θ1e =
pe − p1
2at

+
a

2
,

De (p1, pe, p2) = θe2 − θ1e =
p2 − pe
2 (1− a) t −

pe − p1
2at

+
1

2
,

D2 (pe, p2) = 1− θe2 =
pe − p2
2 (1− a) t +

1− a
2
.

Each firmmaximizes its profit with respect to price. Deriving the first-order conditions
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and rearranging them, we have the equilibrium prices as follows:

p∗1 =
1

6
(4− a) c1 +

1

3
ce +

1

6
ac2 +

1

2
at,

p∗e =
1

3
(1− a) c1 +

2

3
ce +

1

3
ac2 + a (1− a) t,

p∗2 =
1

6
(1− a) c1 +

1

3
ce +

1

6
(3 + a) c2 +

1

2
(1− a) t.

One remark deserves to be mentioned in the equilibrium prices. In the interior solution,
firm e competes in price with two incumbents (i.e., firms 1 and 2), whereas each of the two
incumbents competes directly only with firm e. We then implicitly assume that firm e sets
a uniform price (i.e., no price discrimination) to compete with two different incumbents.
However, the equilibrium price set by each of the incumbents depends not only on its own
cost and firm e’s cost but also on the other incumbent’s. This reflects an indirect effect
through firm e’s price and location strategies. This point relates to the price-competition
effect that works in the second stage of link formation.
The equilibrium profits are described as follows:

Π1 = D1 (p
∗
1, p

∗
e) (p

∗
1 − c1) =

1

2at
(p∗1 − c1)

2 ,

Πe = De (p
∗
1, p

∗
e, p

∗
2) (p

∗
e − ce) =

1

2a (1− a) t (p
∗
e − ce)

2 ,

Π2 = D1 (p
∗
1, p

∗
e) (p

∗
2 − c2) =

1

2 (1− a) t (p
∗
2 − c2)

2 .

When firm e does not enter the market, the equilibrium prices and profits are easily
derived in a similar way. Hence, we report them when we discuss the characteristics of
firm e’s entry decision and its location choice in Section 3.

3.2 The formation of pairwise stable networks

We now proceed to the analysis of network structure (i.e., the formation of pairwise links)
in the second stage. In this subsection, we examine the case in which firm e enters the
market and locates at a. Because our model has a symmetric structure, we can restrict
our attention to the case in which a ∈

£
1
2
, a (t)

¤
. The case in which firm e does not enter

the market will be mentioned in Subsection 3.3.
Suppose a network structure, g, is established. Then, given g, the equilibrium prices

and profits are rewritten as
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p∗1 (g, a) =
1

6
(4− a) c (η1 (g)) +

1

3
c (ηe (g)) +

1

6
ac (η2 (g)) +

1

2
at, (1)

p∗e (g, a) =
1

3
(1− a) c (η1 (g)) +

2

3
c (ηe (g)) +

1

3
ac (η2 (g)) + a (1− a) t, (2)

p∗2 (g, a) =
1

6
(1− a) c (η1 (g)) +

1

3
c (ηe (g)) +

1

6
(3 + a) c (η2 (g)) +

1

2
(1− a) t. (3)

Π1 (g, a) =
1

2at
(p∗1 (g, a)− c (η1 (g)))

2 , (4)

Πe (g, a) =
1

2a (1− a) t (p
∗
e (g, a)− c (ηe (g)))

2 , (5)

Π2 (g, a) =
1

2 (1− a) t (p
∗
2 (g, a)− c (η2 (g)))

2 . (6)

We define firm i’s link-incentive function as follows.

fi (g, a, ij) ≡ p∗i (g + ij, a)− c (ηi (g + ij))− (p∗i (g, a)− c (ηi (g))) , (7)

where ij represents a direct pairwise link between firms i and j (i, j = 1, 2, e, and i 6= j).
Then, g + ij represents the network obtained by adding the link ij to network g. Hence,
the link-incentive function fi (g, a, ij) defines the difference in firm i’s price-cost margin
under network g + ij from that under network g, given any location a. Apparently, the
sign of fi (g, a, ij) is the same as that of Πi (g + ij, a)−Πi (g, a). Hence, hereafter, we use
fi (g, a, ij) to analyze firm i’s incentive to form pairwise links. In fact, we have:
1. When fi (g, a, ij) > 0, firm i has an incentive to add ij to network g. Otherwise, it

has no incentive to do so.
2. When fi (g − ij, a, ij) < 0, firm i has an incentive to sever ij from network g.

Otherwise, it has no incentive to do so.

Then, we obtain the following lemma. (All proofs of lemmas and propositions are
relegated to the Appendix.)

Lemma 1 Suppose ηi (g) = ηj (g) where i, j = 1, 2, e and i 6= j. Then, for any a ∈£
1
2
, a (t)

¢
, we have:

For ij /∈ g, fi (g, a, ij) > 0 and fj (g, a, ij) > 0.
For ij ∈ g, fi (g − ij, a, ij) > 0 and fj (g − ij, a, ij) > 0.

Lemma 1 states that as long as the number of links is the same between firm i and firm j
in a given network, g, the link ij must be included in g (i.e., they both have an incentive
to form a link between them), irrespective of the location of an entrant, a. We should
remember that this statement holds to all the firms, including firm e.
In our analysis, we use a concept of pairwise stability attributed to Jackson and

Wolinsky (1996). The pairwise stability in our model is defined as follows.

Definition 1 A network g is pairwise stable if
(i) for all ij ∈ g, fi (g − ij, a, ij) ≥ 0 and fj (g − ij, a, ij) ≥ 0.
(ii) for all ij /∈ g, if fi (g, a, ij) > 0, then fj (g, a, ij) < 0.
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The pairwise stability captures the idea of mutual consent. It supposes that a pair of
players can communicate and must agree to form a link.

[Insert Figure 1 around here.]

Now, we attempt to characterize the pairwise stable networks in our model. All the
possible networks are drawn in Figure 1. From the result of Lemma 1, it is easy to find
that the networks g0, g4, g5, and g6 are not pairwise stable, because they contain firms i
and j such that ηi (g) = ηj (g), and the link between them is not included in the associated
network.
The remaining networks, g1, g2, g3, and g7 are candidates for pairwise stable networks.

In fact, the set of pairwise stable networks depends on the degree of the cost-reducing
effect of a link on a firm’s marginal cost, as shown in the following lemma. Before reporting
the lemma, we define ∆ ≡ ∆0/∆1. That is, ∆ represents the ratio of the cost-reducing
effect of the first link to that of the second link. We call the case where ∆ > 1 the case
of decreasing incremental change of the cost-reducing effect. That is, when ∆ > 1, the
cost-reducing effect of the first link is larger than that of the second link. Similarly, we
call the case where ∆ < 1 the case of increasing incremental change of the cost-reducing
effect. In that case, the cost-reducing effect of the first link is smaller than that of the
second link.
Then, we report Lemma 2.

Lemma 2 When a ∈
£
1
2
,
√
3− 1

¢
, we have:

(i) If ∆ > 3+a
1−a , g

1, g2, g3, and g7 are pairwise stable.
(ii) If 3+a

1−a ≥ ∆ > 2+a
a
, g1, g3, and g7 are pairwise stable.

(iii) If 2+a
a
≥ ∆ > 2+a

2
, g3 and g7 are pairwise stable.

(iv) If 2+a
2
≥ ∆ ≥ 1− a, g7 is pairwise stable.

(v) If 1− a > ∆ ≥ a
2+a
, g3 and g7 are pairwise stable.

(vi) If a
2+a

> ∆ ≥ 1−a
3−a , g

2, g3 and g7 are pairwise stable.
(vii) If 1−a

3−a > ∆ > 0, g1, g2, g3 and g7 are pairwise stable.
When a ∈

£√
3− 1, a (t)

¢
, the above (i), (ii), (iii), (vii) hold, and (iv) to (vi) are

replaced by the followings:
(iv’) If 2+a

2
≥ ∆ ≥ a

2+a
, g7 is pairwise stable.

(v’) If a
2+a

> ∆ ≥ 1− a, g2 and g7 are pairwise stable.
(vi’) If 1− a > ∆ ≥ 1−a

3−a , g
2, g3 and g7 are pairwise stable.

In Lemma 2, the location of an entrant affects not only the threshold values for the
range of the ratio of the cost-reducing effect of links, but also the set of pairwise stable
networks [compare (iv) to (vi) and (iv’) to (vi’)]. The crucial point of Lemma 2 is that
the set of pairwise stable networks varies, depending on the ratio of the cost-reducing
effect of links.10

10Instead of the concept of pairwise stability, one can use the other equilibrium concepts in our model.
For example, we ensure that if the pairwise Nash stability is used in our model, the pairwise stable sets
are exactly the same as those of the pairwise Nash stability. Similarly, if we use the strong stability in the
sense of Jackson and van den Nouweland (2005), the strong stable networks are g1, g2, and g3. Thus, no
strong stable network exists in the case in which (2 + a) /2 ≥ ∆ ≥ 1− a.
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According to Lemma 2, there can be multiple pairwise stable networks. To refine
the pairwise stable networks, we use a dynamic process for network formation, which is
explained as follows.11 At the initial period, called period 0, the two incumbents (i.e.,
firms 1 and 2) decides whether they will form a link or not. Then, after period 0, a link
ij (i, j = 1, 2, e, and i 6= j), irrespective of whether it is in the existing network or not, is
randomly identified to be updated with uniform probability. If the link ij is already in the
existing network, then either firm i or j can decide to sever the link. If the link is not in
the network, and at least one of the two firms involved would benefit from adding it and
the other would be at least as well off given the existing network, the link is added. Then,
if the process reaches a fixed configuration, it must be a stable network. In our setting,
the presumption that the opportunity to form a collaboration between incumbents comes
first is natural, because their collaboration can have an entry-deterrence effect when there
exists a threat of potential entry.12

Then, we obtain the following lemma.

Lemma 3 When ∆ > 2+a
2
or ∆ < 1− a, the network formation process converges to g3.

When 1− a ≤ ∆ ≤ 2+a
2
, it converges to g7.

Lemma 3 states that when the ratio of the cost-reducing effect of links is large, ir-
respective of whether the incremental change of the cost-reducing effect is increasing or
not, the existing link between the two incumbents remains and the entrant cannot form a
pairwise link with any incumbent. On the other hand, when the ratio of the cost-reducing
effect is small, all the firms, including the entrant, can form two pairwise links with the
other two firms (the complete network).
The intuition of Lemma 3 is explained by two effects generated by the formation of

pairwise links. One is the cost-reducing effect, which is a direct effect of link formation,
whereas the other is the price-competition effect, which is a mixed effect generated by the
network formation and the entrant’s location choice. Let us explain it in more detail.
First, consider the case where ∆ > 2+a

2
. Suppose firms 1 and e are chosen at the first

period, given the initial state g(0) = g3, and consider firm 1’s incentive for link formation.13

The fact that ∆ > 2+a
2
means that the cost-reducing effect of the second link is much

smaller than that of the first link. Then, when firm 1 does not form a link with firm e,
it can enjoy a higher price and obtain a larger market share than those with the link, as
long as firm e does not have e2. This is because firm e has a cost disadvantage over firms
1 and 2. On the other hand, if firm 1 forms 1e, the price it can set should be lower than
the price it can set without the link. This is because firm e becomes more efficient with

11Our dynamic process is similar to the process introduced by Watts (2001) with the exception of the
move at the initial round. Okumura (2007) applies Watts’ dynamic process to the consideration of an
oligopoly model with network formation. Introducing another type of dynamic process, called "learning
dynamics", Bala and Goyal (2001) also insist on the effectiveness of the dynamic process as a refinement
tool of the equilibria of a static game in network formation. See p.1187 of Bala and Goyal (2001).
12Instead, if two of all three firms are randomly chosen from the initial period, multiple kinds of networks

still remains in equilibrium, depending on the value of ∆. For example, there can be an equilibrium in
which each of g2, g3 and g7 appear with probability 1/3 in some range of ∆. However, in other ranges of
∆, the conversion to each of g3 and g7 holds, as shown in Lemma 3.
13Note that at period 0, firms 1 and 2 certainly form their link for any level of ∆.
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a link than without it, although it still has a cost disadvantage over firm 1. Indeed, we
verify this fact by

p∗1
¡
g3 + 1e, a

¢
− p∗1

¡
g3, a

¢
= −1

6
(4− a)∆1 −

1

3
∆0 < 0.

Because the cost-reducing effect generated by 1e (i.e., the second link for firm 1) is small,
the price-competition effect given firm e’s location, a, can be larger than the cost-reducing
effect for firm 1. Hence, firm 1 has no incentive to form 1e. By the same reasoning, we
can verify that firm 2 has no incentive to form e2 if it is chosen at the first period.
Second, consider the case where ∆ < 1−a. In this case, the cost-reducing effect of the

second link is larger than that of the first link. This makes firm e cost-disadvantageous
over the two incumbents if it forms a link with one of them. Again, suppose firms 1 and
e are chosen at the first period. Then we have

p∗e
¡
g3 + 12, a

¢
− p∗e

¡
g3, a

¢
= −1

3
(1− a)∆1 −

2

3
∆0 < 0,

and ensure that, for firm e, the cost-reducing effect of 1e is much smaller than the price-
competition effect. Hence, firm e has no incentive to form 1e.
This argument can be applied to the case in which firms e and 2 are chosen at the first

period. In sum, for ∆ > 2+a
2
or ∆ < 1−a, the network g3 survives in the dynamic process

because, as for a firm that tries to form a link, the cost-reducing effect is smaller than the
price-competition effect. On the contrary, for 1−a ≤ ∆ ≤ 2+a

2
, the cost-reducing effect is

larger than the price-competition effect, so that each of the three firms has an incentive
to form a link with each other.

3.3 Entry and location choice

Now, we turn to the first stage in which firm e makes its entry decision, and we address
two important questions in our analysis: First, which location would firm e choose once
it enters the market? Second, is it easy for firm e to enter the market when it is allowed
to form links with the incumbents?
In this stage, if firm e decides to enter, it also determines its location, a. Using

Assumption 1, we obtain the primary finding of this paper.

Proposition 1 In equilibrium, we have:
(i) For ∆ ∈ (0, 1/2], if (3t− 4∆0)

2 ≤ 36t2∆ (1−∆), firm e chooses a∗ = 1 −
∆ (> 1/2) and enters the market if and only if F ≤ F ∗1 ≡ (1/2) t∆ (1−∆). Other-
wise, a∗ = 1

2
and firm e enters the market if and only if F ≤ F ∗2 ≡ (1/72t) (3t− 4∆0)

2.
(ii) For ∆ ∈ [1/2, 5/4], firm e chooses a∗ = 1/2 and enters the market if and only if

F ≤ F ∗3 ≡ (1/8) t.
(iii) For ∆ ∈ (5/4, 3/2), if (3t− 4∆0)

2 ≤ 72t2 (∆− 1) (3− 2∆), firm e chooses a∗ =
2 (∆− 1) (> 1/2) and enters the market if and only if F ≤ F ∗4 ≡ t (∆− 1) (3− 2∆). Oth-
erwise, a∗ = 1/2 and firm e enters the market if and only if F ≤ F ∗2 ≡ (1/72t) (3t− 4∆0)

2.
(iv) For ∆ ≥ 3/2, firm e chooses a∗ = 1/2 and enters the market if and only if

F ≤ F ∗2 ≡ (1/72t) (3t− 4∆0)
2.
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The result of Proposition 1 is explained by a firm’s incentive to form a link with another
firm. We describe the details of this point below.
Consider the case where 0 < ∆ ≤ 1/2. In this case, according to Lemma 3, if firm e

chooses a between 1−∆ and a (t), the complete network g7 is formed. This result occurs
because the cost-reducing effect is larger than the price-competition effect for any two
firms that try to form a link. Let us explain this point in detail.
Suppose that firms 1 and e are chosen at the first period after firm e chooses a between

1 − ∆ and a (t) and firms 1 and 2 form the link 12 at period 0 (i.e. g(0) = g3). In the
case where 0 < ∆ ≤ 1/2, it is apparent that firm 1 definitely has an incentive to form the
link 1e, because it can enjoy a large cost-reducing effect through 1e. On the other hand,
firm e’s incentive to form 1e depends on the relative magnitude of the cost-reducing effect
through the formation of the link 1e and the price-competition effect which is a mixed
effect generated by the link 1e and firm e’s location. Here, from (1) and (2), we can verify
that, as a (i.e., the distance between firms 1 and e) becomes larger, firm 1 sets a higher
price p∗1 (g, a) associated with a lower demand D1 (p

∗
1, p

∗
e) for its goods, given any network

g. Then, firm 1’s incentive for a high price with a low demand induces firm e to be far
away from firm 1. In fact, the range of [1−∆, a (t)] is the range of firm e’s location at
which firm e prefers the network g4 (i.e., accepting the link 1e) to the network g3 (i.e.,
refusing it). This is because in g4 firm e can compete with an equally efficient rival (i.e.,
firm 2) on the opposite side, whereas in g3 firm e faces two more efficient firms on both
sides. Thus, firm e chooses a∗ = 1−∆ in g4 to avoid fierce price competition in the retail
market. This is ensured by

∂Πe (g
7, a)

∂a
< 0 for any a ∈ [1−∆, a (t)) .

Subsequently, the formation of the link 1e induces firms e and 2 to form the link e2. Thus,
the network g7 is finally established. Hence, we have a∗ = 1−∆ with the network g7.
On the contrary, if firm e chooses location a between 1/2 and 1 − ∆, g3 still stands

in the second stage. This result occurs because, for firm e, the cost-reducing effect of the
link 1e is smaller than the price-competition effect in the range between 1/2 and 1−∆.
Then, to avoid fierce price competition in the retail market, firm e chooses a∗ = 1/2 in
g3.14 Thus, we have a∗ = 1/2 with the network g3.
In sum, in the case where 0 < ∆ ≤ 1/2, we have two equilibrium locations; a∗ = 1−∆

with g7 and a∗ = 1/2 with g3. Needless to say, firm e chooses the location that gives a
higher profit. Then, we can verify that if (3t− 4∆0)

2 ≤ (>)36t2∆ (1−∆), a∗ = 1 − ∆
(a∗ = 1/2) gives a higher profit to firm e (the condition in (i)).
Similarly, in the case where 1/2 < ∆ ≤ 5/4, we ensure that the network g7 is formed in

the second stage, irrespective of firm e’s location a
¡
∈
£
1
2
, a (t)

¤¢
, by the result of Lemma

3 and the condition that 1/2 < ∆ (see the proof of Lemma 3 in the Appendix). Then,
firm e chooses a∗ = 1/2.
In the case where 5/4 < ∆ < 3/2, the incumbent network g3 survives if firm e chooses

location a between 1/2 and 2 (∆− 1), whereas the complete network g7 is formed if firm
e chooses a in the range between 2 (∆− 1) and a (t). Hence, firm e chooses a∗ = 1/2 in

14Indeed, ∂Πe
¡
g3, a

¢
/∂a < 0 for any a ∈

£
1
2 , 1−∆

¢
.
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g3, whereas it chooses a∗ = 2 (∆− 1) in g7. The condition that indicates firm e’s location
choice is given by the statement in Proposition 1.
Last, in the case where ∆ ≥ 3/2, we ensure that network g3 survives in the second

stage, irrespective of firm e’s location a
¡
∈
£
1
2
, a (t)

¢¢
, by the result of Lemma 3 and the

condition that 2 (∆− 1) > 1. Then, firm e chooses a∗ = 1/2.
In Proposition 1, it is difficult to interpret the conditions that indicate firm e’s location

choice when two candidates exist (i.e., the case where 0 < ∆ ≤ 1/2 or 5/4 < ∆ < 3/2).
Let us give an interpretation for these conditions. Consider the case in which 0 < ∆ ≤
1/2. When does firm e choose a∗ = 1/2 rather than a∗ = 1 − ∆? Note that, given
Assumption 1(i) (i.e., ∆0 < (3/5) t), the larger ∆0, the smaller firm e’s profit in g3 (i.e.,
Π∗e (g

3, 1/2)). This result occurs because the two incumbents who have one link with each
other become more efficient as ∆0 becomes larger. On the other hand, firm e’s profit in
g7 (i.e., Π∗e (g

7, 1−∆)) becomes larger as ∆0 becomes larger, when ∆ ≤ 1/2. Hence, as
the cost-reducing effect of the first link becomes large, firm e has more incentive to choose
a∗ = 1−∆, given that other parameters remain constant.
Next, consider the effect of the parameter∆1. It is easy to check that ∂Π∗e (g

7, 1−∆) /∂∆1

< 0 when ∆ ≤ 1/2. When the marginal cost is the same among all firms, the profit-
maximizing location for firm e is a = 1/2. Then, because a∗ = 1 −∆ gets farther from
1/2 as ∆1 becomes larger, firm e’s profit under g7 decreases. Hence, it is more likely for
firm e to take a∗ = 1/2 rather than a∗ = 1−∆ when ∆1 is large.
Similarly, we can give an interpretation of the condition for the case in which 5/4 <

∆ < 3/2. In fact, because ∂Π∗e (g
7, 2 (∆− 1)) /∂∆1 > 0 when ∆ > 1, it is more likely for

firm e to take a∗ = 1/2 than a∗ = 2 (∆− 1) when ∆1 becomes large.15

We summarize these findings as a corollary.

Corollary 1 Consider the case in which 0 < ∆ ≤ 1/2. Then, when ∆0 is large or ∆1 is
small, firm e chooses a∗ = 1−∆. For the case in which 5/4 < ∆ < 3/2, firm e chooses
a∗ = 2 (∆− 1) when ∆1 is large.

The results of Proposition 1 and Corollary 1 imply that when firms in the market have
an opportunity to form links (i.e., collaborations) with each other, an entrant’s location
can be distorted from a welfare viewpoint. To clarify the driving force that generates the
distortion of an entrant’s location, we prepare two benchmarks and compare the results
of the benchmarks with those of Proposition 1 and Corollary 1. The first benchmark is
the case in which no firm in the market has an opportunity to form links, whereas the
second is the case in which only the incumbents can form a link and the entrant is not
allowed to do so.
In the first benchmark, it is easy to verify that firm e has an incentive to choose

aB∗ = 1/2, once it decides to enter the market. Similarly, firm e chooses eaB∗ = 1/2 even
in the second benchmark, because it would like to avoid fierce price competition with
more efficient incumbents. Hence, we ensure that allowing firm e to form a link generates
firm e’s incentive to distort its location. We can state that when there exists a factor that
facilitates collaboration with an entrant, it creates a distortion in the entrant’s location.

15In this case, the effect of ∆0 is ambiguous, because both Π∗e
¡
g3, 1/2

¢
and Π∗e

¡
g7, 2 (∆− 1)

¢
are

decreasing in ∆0.
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In fact, when an entrant has a broad distribution channel or an excellent technology
for the production of an input that is used to produce a final good, the entrant may
easily collaborate with incumbents in the final good market by sharing its knowledge
with the incumbent. For example, Samsung collaborated with Sony when it entered the
LCD market and with Seagate when it entered the hard-disk market. In addition, one
of the factors that facilitate a coalition among firms is the improvement of information
technology, such as the prevalence of Internet or cloud-computing systems. The prevalence
of Internet or cloud-computing systems aids communication among firms, even if they
are distant from each other. Indeed, a newcomer finds it difficult to communicate with
incumbents without the improvement of information technology, because it is not easy for
the newcomer to access knowledge on business customs, the distribution of consumers,
and so on.
Furthermore, we can obtain the analytical result regarding the combined effect of an

entrant’s collaboration with incumbents and its associated location choice on the incum-
bent’s entry-deterrence strategy by providing the threshold level of the entry sunk cost
for the two benchmarks. In the first benchmark in which there exists no opportunity for
all of the firms to form pairwise links, firm e’s profit is

ΠB∗e
¡
∅, aB∗

¢ ¡
= Π∗e

¡
g0, aB∗

¢¢
=
1

8
t,

because it chooses aB∗ = 1/2. Hence, the threshold level of the entry sunk cost in the
first benchmark is FB∗ = (1/8) t. Note that aB∗ = 1/2 and Π∗e = (1/8) t hold as long as
the marginal cost is the same among the three firms, including the entrant. Hence, aB∗

and FB∗ are the first-best solution in the sense that they are realized when the marginal
costs of all the firms (firms 1, 2, and e) are c (2).
Next, we derive the threshold level of the entry sunk cost in the second benchmark

in which only the incumbents can form a pairwise link and the entrant is not allowed to
do so. In this second benchmark, firm e chooses eaB∗ = 1/2, once it decides to enter the
market. Thus, firm e’s profit is given by

eΠB∗e ¡
g3,eaB∗¢ = 1

72t
(3t− 4∆0)

2 .

Hence, the threshold level of the entry sunk cost when there exists a link between the
two incumbents is eFB∗ = (3t− 4∆0)

2 /72t. Comparing eFB∗ with FB∗, we ensure that the
collaboration between the two incumbents can unquestionably have an entry-deterrence
effect, because eFB∗ < FB∗.

Comparing the threshold levels of the entry sunk cost in equilibrium (i.e., F ∗1 to F ∗4)
in Proposition 1 with FB∗ or eFB∗, we immediately obtain the following finding.
Corollary 2 In equilibrium, if the cost-reducing effect of a link is almost constant (i.e.,
the incremental change in the cost-reducing effect scarcely depends on the number of links),
the link between incumbents never has an entry-deterrence effect. Otherwise, the incum-
bent link has an entry-deterrence effect, whereas its effect can be diluted with an entrant’s
location choice.
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According to Proposition 1, for ∆ ∈ [1/2, 5/4], the threshold level of the sunk cost
is exactly the same as that of the first benchmark; F ∗3 = FB∗ = (1/8) t. That is, when
the incremental change of the cost-reducing effect is near 1 (i.e., it scarcely depends
on the number of links), the incumbent link has no entry-deterrence effect because the
incumbents are also willing to form a link with an entrant. Indeed, in that case, the
cost-reducing effect becomes larger than the price-competition effect for all firms, which,
in turn, benefits not only an entrant but also the two incumbents. Then, the entrant is
likely to be welcome so that the complete network g7 is formed. Hence, the incumbent
collaboration does not have an entry-deterrence effect in that case.
Except for that case, the incumbent link certainly has an entry-deterrence effect, even

though the entrant also has an opportunity to form a link with an incumbent. However,
when 0 < ∆ ≤ 1/2 and ∆0 is large or ∆1 is small, the entrant can dilute the entry-
deterrence effect of the incumbent link with its location choice a∗ = 1 − ∆. Similarly,
when 5/4 < ∆ < 3/2 and ∆1 is large, the entrant chooses a∗ = 2 (∆− 1) to make the
entry-deterrence effect of the incumbent link weak.
The result of Corollary 2 provides a crucial implication for the competition policy. Ac-

cording to Corollary 2, the entry-deterrence effect of the collaboration among incumbents
depends on the magnitude of the collaboration effect (i.e., the cost-reducing effect gener-
ated by the collaboration) when there is an opportunity for the incumbents to collaborate
with the entrant. The collaboration among firms may enhance social welfare. Therefore,
in that situation, a competition authority should care about the information regarding
the collaboration effect to evaluate the incumbents’ alleged entry-deterrence strategies.

4 Concluding Remarks

In this paper, we have examined the case in which an entrant has two beneficial strategies;
collaboration with incumbents and location choice. In particular, we have analyzed the
effect of allowing the entrant to have an opportunity to collaborate with incumbents on
its location choice. As stated in the text, it is not rare for entrants to use a strategic tool
of collaboration with incumbents. For example, when an entrant has a broad distribution
channel or an excellent technology for the production of an input that is used to produce
a final good, the entrant may easily collaborate with incumbents in the final good market
by sharing its knowledge with the incumbents. In addition, facilitating an entrant’s
collaboration with incumbents seems to be justified by the improvement of information
technology such as the prevalence of Internet or cloud-computing systems.
Using the standard setting of a Hotelling model with a pairwise-link formation, we

have demonstrated that when an entrant is allowed to form a link and the link formation
requires mutual consent, the entrant has an incentive to distort its location to form a link
with each of the incumbents. Then, we have demonstrated that the existing link formed
by the incumbents cannot be a device to deter entry when the incremental change of the
cost-reducing effect generated by forming a link scarcely depends on the number of links.
The model presented in this paper is quite simple, so that several extensions deserve to

be mentioned for future research. Here, we will mention three of them. First, introducing
multiple entrants or more than two incumbents may affect the analytical results derived
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above, because the relative magnitude between the cost-reducing effect and the price-
competition effect changes according to the number of firms. Second, if the cost-reducing
effect generated by a pairwise link formation depends not only on the number of links
but also on the degree of spillovers (i.e., how many links a neighbor that has a link with
a particular firm has with other firms), our analytical results become quite complicated.
Third, the change of spatial structure from a linear city to a circular city seems to provide
a dramatic qualitative change in the above results, as it emerges when examining other
research issues.16

Appendix

A. Proof of Lemma 1

Consider a network, g, in which η1 = ηe = η and η2 = eη (6= η). Suppose the link 1e /∈ g.
Then, from (1) and (2), we have:

f1 (g, a, 1e) ≡ p∗1 (g + 1e, a)− c (η + 1)− (p∗1 (g, a)− c (η))

=
1

6
a (c (η)− c (η + 1)) > 0.

fe (g, a, 1e) ≡ p∗e (g + 1e, a)− c (η + 1)− (p∗e (g, a)− c (η))

=
1

3
a (c (η)− c (η + 1)) > 0.

Next, suppose 1e ∈ g. Again, from (1) and (2), we have:

f1 (g − 1e, a, 1e) ≡ p∗1 (g, a)− c (η)− (p∗1 (g − 1e, a)− c (η − 1))

=
1

6
a (c (η − 1)− c (η)) > 0.

fe (g − 1e, a, 1e) ≡ p∗e (g, a)− c (η)− (p∗e (g − 1e, a)− c (η − 1))

=
1

3
a (c (η − 1)− c (η)) > 0.

Notice that all the above inequalities hold for any a ∈
£
1
2
, a (t)

¢
.

Likewise, we can verify the claim for any other pairs by using (1) to (3). ¥

B. Proof of Lemma 2

Using (1) to (3) and the definition of pairwise stability, we need to check when each of
the networks g1, g2, g3, and g7 can be pairwise stable.
First, consider g1. Link 1e satisfies the condition of pairwise stability from Lemma

1. By checking the definition of pairwise stability, we can verify that link 12 satisfies its

16Complications would arise in such a model, mainly because all the incumbents are symmetric in a
circular city model in the sense that they are located within equal distance, and they compete on both
sides with rivals, even though we allow an entrant to choose its location between two incumbents.
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condition when ∆ > 2+a
a
or ∆ < 1−a

3−a . Similarly, link e2 satisfies its condition when ∆ > 1
a

or ∆ < 2
3−a . Therefore, g

1 is pairwise stable when ∆ > 2+a
a
or ∆ < 1−a

3−a .
The same procedure for the check of pairwise stability conditions can be applied to g2,

g3, and g7. In fact, we ensure that: (i) g2 is pairwise stable when ∆ > 3+a
1−a or ∆ < a

2+a
,

(ii) g3 is pairwise stable when ∆ > 2+a
2
or ∆ < 1 − a, and (iii) g7 is pairwise stable for

any ∆ > 0.
Furthermore, we know that 1−a ≥ (<) a

2+a
if and only if 1

2
≤ a ≤

√
3−1

¡√
3− 1 < a < a (t)

¢
.

Then, the results derived above are summarized as in the text. ¥

C. Proof of Lemma 3

We must provide the proofs for two cases; the case in which a ∈
£
1
2
,
√
3− 1

¢
and the case

in which a ∈
£√
3− 1, a (t)

¢
. Hereafter, we denote the network at t-th period by g(t).

(i) The case where a ∈
£
1
2
,
√
3− 1

¢
First, we consider the case where a ∈

£
1
2
,
√
3− 1

¢
. It is easy to verify that at the initial

period, link 12 is certainly formed, because it is pairwise stable. Then, from Lemma 2,
we know that, given g(0) = g3, g3 and g7 are the candidates for pairwise stable networks
to which the dynamic process converges when ∆ > 2+a

2
or ∆ < 1−a. On the other hand,

when 1 − a ≤ ∆ ≤ 2+a
2
, only g7 is its candidate, whereas there is a possibility that no

network survives this process.
Consider the case in which ∆ > 2+a

2
or ∆ < 1−a. When firms 1 and e are chosen with

probability 1
3
at the 1st period, firm 1 has no incentive to form 1e because f1 (g3, a, 1e) < 0

for ∆ > 2+a
2
. Hence, g(1)

¡
= g(0)

¢
= g3. Next, suppose firms 1 and 2 are chosen with

probability 1
3
. Because 12 ∈ g3, we have g(1) = g(0) = g3 from Lemma 1. Lastly,

suppose firms e and 2 are chosen with probability 1
3
. Because ∆ < 1 − a < a for

a ≥ 1
2
, fe (g3, a, e2) < 0 which implies that firm e has no incentive to form e2. Hence,

g(1) = g(0) = g3. Therefore, when ∆ > 2+a
2
or ∆ < 1 − a, g3 remains forever, i.e., the

dynamic process converges to g3.
Next, consider the case in which 1−a ≤ ∆ ≤ 2+a

2
. Again, at the initial period, we have

g(0) = g
3. Suppose firms 1 and e are chosen with probability 1

3
at the 1st period. Then,

because f1 (g3, a, 1e) ≥ 0 and fe (g3, a, 1e) ≥ 0 when 1− a ≤ ∆ ≤ 2+a
2
, the two firms have

an incentive to form link 1e. Hence, g(1) = g(0)+1e = g4. Then, from Lemma 1, we know
that firms e and 2 have an incentive to form link e2, because ηe (g

4) = η2 (g
4) = 1 and

e2 /∈ g4. This means that, once firms e and 2 are chosen with probability 1
3
, g4 converges

to g7. Next, suppose firms 1 and 2 are chosen at the 1st period. Because 12 ∈ g3, we
have g(1) = g(0) = g3 from Lemma 1. Notice that, once firms 1 and e are chosen after this
period, g3 goes to g4. Again, g4 converges to g7 as long as firms e and 2 are chosen.
Suppose firms e and 2 are chosen at the 2nd period after g(1) = g(0) = g3. We

need to divide the case where 1 − a ≤ ∆ ≤ 2+a
2
into three cases: the case in which

3−a
2
< ∆ ≤ 2+a

2
, the case in which a < ∆ ≤ 3−a

2
, and the case in which 1 − a ≤ ∆ ≤ a.

When 3−a
2
< ∆ ≤ 2+a

2
, g3 converges to g7 through g4 as long as firms 1 and e are chosen.

When a < ∆ ≤ 3−a
2
, firms e and 2 have an incentive to form the link e2 under g3, which

means g3 goes to g6. Also, once firms 1 and e are chosen after this period, firms 1 and e
have an incentive to form link 1e, which means g6 goes to g7. The process at the case in
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which 1 − a ≤ ∆ ≤ a is the same as the case in which 3−a
2
< ∆ ≤ 2+a

2
. Hence, we can

summarize that when firms 1 and 2 are chosen at the 1st period, the dynamic process
converges to g7.
Lastly, suppose firms e and 2 are chosen with probability 1

3
at the 1st period. The

analysis is the same as the case in which firms e and 2 are chosen at the 2nd period after
g(1) = g(0) = g

3. Therefore, the process converges to g7.
In sum, we ensure that when 1− a ≤ ∆ ≤ 2+a

2
, the dynamic process with the initial

state g3 converges to g7.
(ii) The case in which a ∈

£√
3− 1, 1

¢
From Lemma 2, we know that, given g(0) = g3, g3 and g7 are the candidates for pairwise

stable networks to which the dynamic process converges when ∆ > 2+a
2
or ∆ < 1−a. On

the other hand, when 1 − a ≤ ∆ ≤ 2+a
2
, only g7 is its candidate. Hence, the procedure

for checking the convergence of the dynamic process is the same as in (i), except that
when 1 − a ≤ ∆ ≤ 2+a

2
, we need to divide the case into two cases: the case in which

a
2+a
≤ ∆ ≤ 2+a

2
and the case in which 1− a ≤ ∆ < 2+a

2
. However, the same reasoning as

in the case in which 1 − a ≤ ∆ ≤ 2+a
2
in (i) applies to both cases. Therefore, we derive

the same result as in (i). ¥

D. Proof of Proposition 1

Let us consider firm e’s problem in the first stage. To do so, we first rewrite the conditions
under which the network formation process converges to g3 and g7, respectively. In fact,
the condition that ∆ > 2+a

2
or ∆ < 1− a is rewritten as

a < 2 (∆− 1) or a < 1−∆.

We know that 2 (∆− 1) ≥ (<) 1 −∆ if and only if ∆ ≥ (<) 1. Hence, when ∆ ≥ 1, we
need to check only the condition that a < 2 (∆− 1). Otherwise, we check the condition
that a < 1−∆. Similarly, the condition that 1− a ≤ ∆ ≤ 2+a

2
is rewritten as

a ≥ 1−∆ and a ≥ 2 (∆− 1) .

Again, we obtain that when∆ ≥ 1, we need to check only the condition that a ≥ 2 (∆− 1).
Otherwise, we check the condition that a ≥ 1−∆.
Then, using these conditions and the fact that a ∈

£
1
2
, a (t)

¢
, we have five cases to be

considered: (i) 0 < ∆ ≤ 1
2
, (ii) 1

2
< ∆ ≤ 1, (iii) 1 < ∆ ≤ 5

4
, (iv) 5

4
< ∆ ≤ 3

2
, and (v)

∆ > 3
2
. Let us examine each of the cases separately.

(i) The case in which 0 < ∆ ≤ 1
2
.

In this case, because ∆ < 1, the condition that a ≥ (<) 1−∆ is a relevant constraint
for firm e’s problem. Then, if 1

2
≤ a < 1 − ∆, g3 is formed with probability 1 in the

second stage. On the other hand, if 1−∆ ≤ a < a (t), g7 is formed with probability 1 in
the second stage. Hence, we need to solve each of the two subproblems and then compare
firm e’s maximized profits to obtain firm e’s profit-maximizing location.
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The first subproblem is formulated as follows:

max
a

Πe
¡
g3, a

¢
=

1

2a (1− a) t
¡
p∗e
¡
g3, a

¢
− c

¡
ηe
¡
g3
¢¢¢2

s.t.
1

2
≤ a < 1−∆.

Then, we obtain the solution a∗(i),1 = 1
2
, and the associated profit is as follows:

Π∗e

µ
g3,
1

2

¶
=
1

72
(3t− 4∆0)

2 .

Similarly, the second subproblem is formulated by:

max
a

Πe
¡
g7, a

¢
=

1

2a (1− a) t
¡
p∗e
¡
g7, a

¢
− c

¡
ηe
¡
g7
¢¢¢2

s.t. 1−∆ ≤ a < a (t) .

We obtain the solution a∗(i),2 = 1−∆, and the associated profit is as follows:

Π∗e
¡
g7, 1−∆

¢
=
1

2
t∆ (1−∆) .

We can ensure that both a∗(i),1 and a∗(i),2 can be a solution when 0 < ∆ ≤ 1
2
, depending

on the level of parameters. Then, comparing Π∗e (g
3, 1/2) with Π∗e (g

7, 1−∆) gives the
condition in the text. Needless to say, the associated profits correspond to the threshold
levels of entry sunk cost F ∗1 and F ∗2.
(ii) The case in which 1

2
< ∆ ≤ 1

Because ∆ ≤ 1, the condition that a ≥ (<) 1−∆ is a relevant constraint for firm e’s
problem. Furthermore, because 1−∆ < 1

2
, firm e’s problem is formulated as

max
a

Πe
¡
g7, a

¢
s.t.

1

2
≤ a < a (t) .

We obtain the solution a∗(ii) = 1
2
, and the associated profit is as follows:

Π∗e

µ
g7,
1

2

¶
=
1

8
t,

which corresponds to F ∗3.
(iii) The case in which 1 < ∆ ≤ 5

4

Because ∆ > 1, the condition that a ≥ (<) 2 (∆− 1) is a relevant constraint for firm
e’s problem. Furthermore, because 2 (∆− 1) ≤ 1

2
, firm e’s problem is formulated as

max
a

Πe
¡
g7, a

¢
s.t.

1

2
≤ a < a (t) .

18



We obtain the solution a∗(iii) = 1
2
, and the associated profit is as follows:

Π∗e

µ
g7,
1

2

¶
=
1

8
t.

(iv) The case in which 5
4
< ∆ ≤ 3

2

Because ∆ > 1, the condition that a ≥ (<) 2 (∆− 1) is relevant for firm e’s problem.
Then, if 1

2
≤ a < 2 (∆− 1), g3 is formed with probability 1 in the second stage. On the

other hand, if 2 (∆− 1) ≤ a < 1, g7 is formed with probability 1 in the second stage.
Again, we need to solve each of two subproblems and then compare firm e’s maximized
profits to obtain firm e’s profit-maximizing location.
The first subproblem is formulated as follows:

max
a

Πe
¡
g3, a

¢
s.t.

1

2
≤ a < 2 (∆− 1) .

Then, we obtain the solution a∗(iv),1 = 1
2
, and the associated profit is as follows:

Π∗e

µ
g3,
1

2

¶
=
1

72
(3t− 4∆0)

2 ,

The second subproblem is formulated by:

max
a

Πe
¡
g7, a

¢
s.t. 2 (∆− 1) ≤ a < a (t) .

We obtain the solution a∗(iv),2 = 2 (∆− 1), and the associated profit is as follows:

Π∗e
¡
g7, 2 (∆− 1)

¢
= t (∆− 1) (3− 2∆) ,

which corresponds to F ∗4. We can ensure that both a∗(iv),1 and a∗(iv),2 can be a solution
when 5

4
< ∆ ≤ 3

2
, depending on the level of parameters. Then, comparing Π∗e (g

3, 1/2)
with Π∗e (g

7, 2 (∆− 1)) gives the claim in the text.
(v) The case in which ∆ > 3

2

Because ∆ > 1, the condition that a ≥ (<) 2 (∆− 1) is relevant for firm e’s problem.
Furthermore, because 2 (∆− 1) ≥ 1, firm e’s problem is formulated as

max
a

Πe
¡
g3, a

¢
s.t.

1

2
≤ a < a (t) .

We obtain the solution a∗(v) = 1
2
, and the associated profit is as follows:

Π∗e

µ
g3,
1

2

¶
=
1

72
(3t− 4∆0)

2 .

Summarizing all of the above results gives the claim in the text. ¥
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