
Measures to Promote Green Cars: Evaluation at the
Car Variant Level ∗

Taiju Kitano†

Graduate School of International Management, Aoyama Gakuin University

May 2016

Abstract
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1 Introduction

Recent empirical studies examining the existing policies in automobile markets have

employed discrete choice analyses to estimate the multi-product demand function. The

demand estimates allow researchers to assess the impact of policy interventions by conducting

counterfactual simulation under certain supply-side assumptions. The dataset used in this

type of discrete choice analysis comprises market-level information: data on the sales, prices,

and characteristics for each alternative in a choice set. In automobile markets, an alternative

in the choice set is usually a car model (nameplate) because the sales data are available at

the model level. The problem here is that the prices and charateristics data are available at

a finer level of aggregation, namely the variant level. Thus, a proper method to associate

the model level data with the variant level data is necessary to construct the database for

the discrete choice analyses.

Since the variant-level differences in prices and attributes are substantial, the method used

to construct the database is an important element when assessing attribute-based policy

interventions, such as tax incentives and subsidies for the promotion of green cars. The

standard method used to construct the database is to identify a base variant for each model

and match its price and characteristics with its sales at the model level (e.g., ?; ?; ?).

This is the case of polar weighting, as the weight of the base variant is set to be one. The

polar weighting is problematic when assessing attribute-based policy interventions because

the outcome of counterfactual simulation depends solely on the characteritics of the base

variants. In the case of Japanese automobile market, the amount of tax reduction and

subsidies can be different across the variants of a model. In fact, a substantial number of

models exist whose baseline variants are out of (within) the policy target and other variants

are within (out of) it. With respect to these models, the effects of policy determined by the

characteristics of the base variants, although the policy had different effects on the variants

other than the base. Apart from the polar weighting, a few studies employ another method:

matching the average prices and attributes of the variants with their model-level sales (e.g.,

?). This is the case of equal weighting, as the share of each variant of a model is assumed to

be the same. The equal weighting is clearly a challenge because this rules out the possibility

that the policy shifts the demand between the variants in the policy target and those out

of it. Another problem is that most car models often have a luxury variant, which is much

more expensive than the other variants, and thus is rarely chosen.1

1The sole exception is ?, who estimates the variant-level demand using the variant-level sales data.
However, the relevant data are rarely available, as in the Japanese automobile market. As subsequently
explained, this study therefore proposes a method to analyze the variant-level demand without the variant-
level sales data.
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This study develops a method to estimate variant-level demand using the data at different

levels of aggregation, in order to overcome the problems regarding the construction of the

database. The model introduced in this study is based on a two-level nested logit model,

where consumers choose a car model in the first level and one of its variants in the second

level. I then derive the model-level, that is, nest-level demand function, in which the variant-

level prices and characteristics information are incorporated as a logit-inclusive value. The

key assumption in this econometric analysis is that an unobserved demand characteristic

or shock is common among the variants of a car model. Then, the parameters of a model-

level demand function can be estimated based on the moment condition on the unobserved

characteristics, as in ? and ?. Note that the variant-level demand can be obtained with the

parameter estimates. Therefore, the model-level prices and characteristics can be derived as

the weighted average over the variants of the model: this contrasts with the polar and equal

weighting employed in the previous studies. In addition, the model allows me to address the

substitution among variants of a model induced by the measures to promote green cars. In

this study, I conduct counterfactual simulation to assess the effects of the measures.

This paper contributes to the literature that explores ways to estimate demand based

on the discrete choice models under various data availability conditions. ? introduces a

method to incorporate the information of the pattern of car purchases across demographics

in the estimation of demand using the discrete choice model, to obtain more precise demand

estimates. Similarly, ? proposes a method to use both individual-level and market-level data

to identify demand parameters in the discrete choice model. While these studies indicate the

ways to use richer information, ? propose a method to estimate the demand system under

data limitation where market-level quantity data are unavailable but market share ranks

data are available. This study presents a method to estimate demand under a different

type of data limitation, wherein the price and sales data are available at different levels of

aggregation.

The rest of this paper is organized as follows. Section 2 describes the fuel economy

standard and tax system in Japan, the key elements to understand the measures to promote

green cars in the country. Section 3 presents the data used in this analysis and explains

the variation in attributes that causes the effects of measures to differ across the variants

of a model. Section 4 introduces a discrete choice model of product differentiation at the

car variant level. Section 5 explains the estimation procedure and provides the estimation

results. Section 6 reports the simulation results for policy assessment. Section 7 concludes

the paper.
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2 Green cars and tax systems

There are two types of green cars in Japan. One is next generation cars which are

environmental friendly and based on fuels other than gasoline and includes clean diesel,

plug-in hybrid, electronic, fuel cell and natural gas vehicles.

3 Fuel economy standards and tax systems

Fuel economy standards are key to understanding the automobile tax system and tax

incentives introduced in Japan. I first introduce the fuel economy standards prevalent during

the study period, April 2012 to March 2014.

From Table 1, the Japanese fuel economy standards are based on car weights and fuel

economies. The standards during the study period are based on the 2015 target, which

specifies the average fuel economy level the newly sold cars of every car manufacturer should

exceed until March 2015. Thus, the standards act as the Corporate Average Fuel Economy

regulation of the United States, although there is no explicit penalty for the violation of

standards in the Japanese market. Instead, the government provides car manufacturers with

incentives to meet the standards through the automobile tax systems and tax incentives and

subsidy measures, as will be discussed in the following sections.

3.1 Automobile related taxes

A variety of automobile related taxes exists in Japan. At the time of purchase, car users

have to pay a 5% acquisition tax, in addition to the 5% consumption tax.2 During the

ownership of cars, users have to pay a tonnage tax and automobile/mini-vehicle taxes on

a yearly basis. The amount of tonnage tax for each car depends on the car weight and

changes over time, as shown in Table 2. Following the change in tonnage tax system from

May 1, 2012, fuel efficiency of cars has become the factor determining the amount of tax:

the amount of tax for vehicles complying with the 2015 fuel efficiency standards was 2500

JPY (≈ 25 USD)/year, while that for other vehicles was 4100 JPY/year.

The tonnage tax is assessed at the time of purchase of new cars and at every car inspec-

tion. For each occasion, the car owners have to pay tax for the period until the next car

inspection. For example, car owners have to pay tonnage tax for three years at the time of

2To be more precise, acquisition tax is imposed on the tax base for each car model; this is usually around
90% of the new car prices. Thus, the real tax rate is 4.5%. In addition, this tax is exempted if the tax base
is less than .5 million JPY; this exemption is virtually irrelevant to this study because none of the new car
prices is below this tax base. The exemption matters for cheaper used cars, which are out of the scope of
this study.
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purchase, because the first car inspection is three years after purchase; similarly, at the time

of first inspection, they have to pay tax for two years because the second car inspection is

two years after the first inspection.

The amount of automobile tax depends on the vehicles’ engine capacity; a mini-vehicle

tax is imposed if the car is categorized as a mini vehicle; that is, cars with (1) engine

displacement of ≤ 660cc and with (2) length ≤ 3.4m, width ≤ 1.48m, and height ≤ 2.0m.

As shown in Table 2, mini-vehicle owners receive favorable treatment in terms of tax payment

compared to owners of standard-sized cars (>660cc): the minimum automobile tax is 29500

JPY, whereas the tax for mini-vehicles is only 7200 JPY.

Note that the original tax system already shows a favorable treatment for green cars; how-

ever, the tax incentives explained in the following section further strengthen the motivation

to purchase green cars.

3.2 Tax incentives

In order to promote fuel-efficient vehicles, the Japanese government has employed tax

incentives, as summarized in Table 3. The first column of the table shows that green cars

(electric vehicles and gas and hybrid vehicles complying with the fuel-efficiency and emission

standards) are eligible for tax reduction. During the study period, most of the car models

meet the emission standards; hence, the fuel-economy standards are the key to qualifying

for tax exemption or reduction.

3.3 Subsidies for green cars

In addition to tax incentives, the Japanese government introduced a subsidy measure to

promote green cars in April 2012. The measure was initially scheduled to end by February

2013, but it ended in September 2012 because of exhaustion of the budget for subsidy: the

budget was set at 270 bil. JPY. The subsidy was provided to consumers who purchased a

car complying with the 2015 fuel economy standards, or the 2010 fuel economy standards

+20%. The amount of subsidy per unit is 100,000 JPY for standard-sized cars and 70,000

JPY for mini-vehicles.
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4 Data and variant-level heterogeneity

4.1 Data

The data are on a monthly basis, covering the period from April 2012 to March 2014. I

collect the variant-level prices and characteristics from Goo-net, a used car website operated

by PROTO Corporation.3 The prices given are the listed prices, although it is known that car

dealers usually give a discount to their customers through price negotiations. Unfortunately,

the transaction prices data are not available and hence I use the listed prices in the following

analyses. The model-level data of sold vehicles are obtained from Jidousha Touroku Tokei

Jouhou: Shinsha-hen (New Car Registration Statistics) published monthly by the Japan

Automobile Dealers Association. This paper focuses on the Japanese car models that account

for the majority of the market.

4.2 Variant-level heterogeneity

The data fromGoo-net show substantial heterogeneity across the variants of a model. The

number of variants in April 2013 is 1443, while the number of models is 147; thus, every model

has about 10 variants on average. Table 4 shows the variant-level heterogeneity in prices

and attributes for the 147 models. The first row of the table indicates the substantial price

differences: the standard deviation in prices is 0.326 mil. JPY, and the difference between

the maximum and minimum prices is 0.906 mil. JPY, which indicates a 40% difference.

The variant-level heterogeneity in car characteristics is moderate compared to that in prices,

but the difference between the minimum and maximum is large for some characteristics.

In particular, a large difference exists in the fuel economy of a model, indicating that the

promotion measures can have different effects across the variants of a model.

4.2.1 Case of Subaru IMPREZA

The problem of associating model-level sales data with variant level prices and attributes

data can be easily understood from examples of particular models. I here introduce the case

of IMPREZA supplied by Subaru. According to the sales data, IMPREZA is one model; for

exapmle, its sales is 5262 units in April 2013. On the other hand, according to the Goo-net,

the data source of prices and attributes, there are four “models” of IMPREZA: IMPREZA,

IMPREZA G4, IMPREZA XV, and IMPREZA Sports, and each of them has variants. In

total, these models contain 12 variants. Figure * shows the situation of IMPREZA with the

information on prices and some key attorubtes of the variants. The price difference is 8000

3“http://www.goo-net.com/catalog/” (in Japanese).
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USD at maximum. The weights and fuel economies are also different across variants, which

implies that the effects of the environmental policies can be different across models as the

fuel economy standard is based on the weight and the fuel economies of the cars. In fact,

in the case of IMPREZA, 8 variants out of 12 comply with fuel economy standards, while

the rest of them does not. In particular, the base variant, namely the cheapest variant does

not meet the fuel economy standard and is out of the environmental policies. Therefore, If

the polar weighting method is applied as in the previous literature, the effects of policies

on IMPREZA sales are predicted to be negative as the counter-factual experiment based

on the structural econometric models assumes that IMPREZA is out of the policy target.

This is clearly problematic because the policies should have positive impacts on the variants

complying with the fuel economy standard in reality, though this possiblity is excluded

through the contruction of the database.

4.2.2 Variant-level heterogeneity in fuel efficiencies at the market level

The case of IMPREZA is not specific one. This problem is observed at the market level.

To examine the variant-level heterogeneity in the effects of tax incentives and subsidies, I

first compute the share of the variants meeting the 2015 Fuel Economy Standards for each

car model. The share of a model j is calculated as follows.

SFS
j =

NFS
j

Nj

,

where NFS
j is the number of variants meeting the standards within the model j, and Nj is

the number of variants of the model j. In addition to this, I also compute the shares for the

cases of the fuel economy standards +10% and +20% because the tax incentive measures

are based on these values, as shown in Table 3. They are denoted as SFS+10
j and SFS+20

j ,

respectively. Then, I construct the distributions of the shares, SFS
j , SFS+10

j and SFS+20
j ,

over the models. The left bars in Figure 1 show the proportional frequencies of the range of

SFS
j specified in the values of horizontal axis, while the middle and right bars shows those

of SFS+10
j and SFS+20

j , respectively. The figure shows that a substantial fraction of models

take the values of SFS
j , SFS+10

j and SFS+20
j between 0 and 0.1 or between 0.9 and 1. This

indicates that there are a number of models whose variants are similar in the sense that

most variants meet or do not meet the fuel economy standards within the models. For these

models, the effects of the attribute-based policy intervetions, namely the tax incentives and

subsidy for the green cars, are common across the variants.

Note that there are a non-negligible share of models whose variants are dissimilar in terms

of the qualification of the fuel economy standards: with respect to SFS
j , 33% of the models
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lie in the range from 0.1 to 0.9. The variant-level heterogeneity indicates that the effects of

the attribute-based policy interventions are different across variants of the models. Thus,

the method to associate the model-level sales with the variant-level prices and characteristics

must be chosen precisely when assessing such policy interventions, as the case of IMPREZA

indicates.

4.2.3 Case of Mazda AXELA

There is a problem on the assessment on the next generation cars. The other example is

AXELA marketed by Mazda. As is the case of IMPREZA, AXELA is one model in the sales

data, while it has several models in Goo-net : AXELA, AXELA Sports and AXELA Hybrid

each of which has multiple variants. A problem here is that there are variants with different

engine types: gasoline, hybrid and clean diesel engines. Since the sales data contains one

value of the AXELA sales, the sales of clean diesel cars, i.e. one of the next generation

cars, can not be identified from the data. Under the polar weighting, AXELA sales are not

counted as the sales of clean diesel cars because the cheapeset variant is not equipped with

the clean diesel engine. This is clearly problematic and thus the variant-level analyses are

necessary in order to assess the impacts of policies on the next generation cars.

5 Demand

The demand side of the market is modelled in a discrete choice framework. The set of

models supplied in a market at time t is Jt, where each car model j ∈ Jt has the set of

variants Bj. In addition to the option to purchase one from the set of inside option, i.e.

∪j∈JtBj, each consumer can choose an outside option, i.e. not to purchase a new car. Given

these possible choices, every consumer chooses an alternative that gives the highest utility.

Consumer i’s (indirect) utility obtained from model j with variant n ∈ Bj is specified as

(hereafter, the time subscript t is suppressed)

uijn = δjn + µijn + ϵijn , (1)

where δjn +µijn is the deterministic part of the utility, which is the function of car attributes

and individual characteristics. δjn captures the mean evaluation of variant n ∈ Bj common to

all consumers, and µijn is the individual-specific evaluation of the variant. As is common in

the literature, the deterministic part of utility obtained from the outside option is normalized

to zero; that is, δ0 + µi0 = 0.
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δjn is further decomposed as:

δjn = δj +∆δjn , (2)

where

δj =
∑
k∈Kj

xjkβk + ξj, and ∆δjn =
∑

k∈K\Kj

xjnkβk. (3)

K is the set of car characteristics (incl. a constant term) and Kj ⊆ K is the set of characteris-

tics common to all the variants of model j. xjk is the value of characteristics common across

variants whereas xjnk is the value of characteristics different across variants. Coefficients

βk are parameters to be estimated. Note that Kj can differ from model to model; that is,

Kj ̸= Kj′ for j
′ ̸= j. In addition, xjk includes the constant term and thus Kj never be a null

set.

ξj represents an unobserved characteristic and a demand shock specific to model j. The

key assumption here is that unobserved characteristics are not allowed to vary across variants

but has to be common across all variants of the model. This might be a reasonable assump-

tion, in that the variants usually share the same design and demand shock. As explained in

the following section, this assumption is necessary for my estimation strategy.

µijn is also decomposed into the parts of utilities common and different across variants;

that is,

µijn = µij +∆µijn , (4)

where,

µij =
∑
k∈Kj

xjkνikσk, and ∆µijn = αipjn +
∑

k∈K\Kj

xjnkνikσk. (5)

Note that αi ≡ α/yi is the price sensitivity of consumer i inversely proportional to consumer

i’s income yi. α is a parameter to be estimated and pjn is the expenditure on the purchase

of variant n ∈ Bj; this consists of the price and automobile-related taxes, including the tax

incentives. νik is consumer i’s specific taste of characteristic k, which is assumed to follow a

standard normal distribution. σk is a parameter to be estimated; this captures the standard

deviation on the individual-specific taste of characteristic k.

ϵijn represents consumer i’s idiosyncratic taste of variant n of model j and is assumed to

follow a Generalized Extreme Value (GEV) leading to the following choice probability:

sijn = sij · sin|j. (6)

Here, sijn is the probability of consumer i choosing variant n of model j, which is a product
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of the choice probability of model j,

sij =
eδj+µij+λIij

1 +
∑

l∈J eδl+µil+λIil
, (7)

and the choice probability of variant n conditional on choosing model j,

sin|j =
e(∆δjn+∆µijn )/λ∑

m∈Bj
e(∆δjm+∆µijm )/λ

. (8)

Note that Iij is a logit-inclusive value specified as

Iij = ln

∑
n∈Bj

e(∆δjn+∆µijn )/λ

 . (9)

λ is a parameter to be estimated, and, as shown in ?, has to lie between 0 and 1 to be

consistent with the utility maximization problem. As λ approaches 0, the dependency across

variants becomes stronger, and, in the limit, that is, λ → 0, the model converges to the

elimination-by-aspect model of ?. On the other hand, as λ approaches 1, the dependency

becomes weaker and the model reduces to the single-level logit model at λ = 1. I will

statistically test whether the estimate of λ is located within the interval.

The model-level share function can be derived by integrating the individual choice prob-

ability in Eq.(7) over the distribution on νi = (νik)k∈K and yi. νi is assumed to follow a

standard normal distribution, whereas yi follows the empirical income distribution obtained

from Kokumin Seikatsu Kiso Chosa (Comprehensive Survey of Living Conditions of the Peo-

ple on Health and Welfare) released annually by the Ministry of Health, Labor and Welfare.

Now, the share of the model, j, can be calculated as

sj =

∫
y

∫
ν

sijdFν(ν)dFy(y), (10)

where Fν(·) is the cumulative standard normal distribution and Fy(·) is the cumulative

empirical income distribution.

The variant-level share function can be derived in a similar manner: the share of variant

n ∈ Bj is

sjn =

∫
y

∫
ν

sijndFν(ν)dFy(y). (11)

In order to estimate the demand-side parameters, I focus on the model-level share function

because the variant-level sales data are unavailable. As explained in the following section, it
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is possible to apply a BLP-type contraction mapping method based on the model-level share

function and estimate the parameters from the moment condition on ξj.

6 Estimation

6.1 Simple case: no random coefficient

For simplicity, I first explain the case of no random coefficient—common price sensitivity,

that is, µij = αpjn, and no individual heterogeneity on car characteristics, that is, σk = 0

for all k. Now, the individual share function in Eq.(??) becomes the market share function,

namely, sij = sj, and the following equation can be derived:

ln(sj)− ln(s0) =
∑
k∈Kj

xjkβk + λ ln

∑
n∈Bj

e

(
αpjn+

∑
k∈K\Kj

βkxjnk

)
/λ

+ ξj. (12)

As the above expression clearly shows, the equation is linear in unobserved characteristics,

ξj, and thus the parameters in the utility function θ = (α, (βk)k∈K, λ) can be estimated using

the non-linear estimation method. If ξj is uncorrelated with the variables in the equation,

the set of parameters can be estimated using non-linear least squares. However, as commonly

discussed in the literature, the unobserved characteristics are likely to be correlated with the

prices, pjn , n ∈ Bj; therefore, certain moment conditions on ξj are needed to estimate the

parameters.

6.1.1 Moment condition

The model is estimated on the basis of a moment assumption on ξjt representing the

unobserved demand shock and characteristics. A problem here is that ξjt should be cor-

related with pjt because the positive unobservable characteristics or demand shocks induce

higher prices. In this paper, I use the set of instruments based on the moment condition

E[ξjt|x1t, . . . ,x#Jtt] = 0 for all j; this is often used in the literature.

Note that this study deals with rich information on the characteristics because each

model usually has multiple variants. Using this variation in characteristics in a model, I set

the mean and standard deviation across the variants in the model as the instruments for

estimation. These variables are valid instruments because the mean and standard deviation

of the characteristics are correlated with the prices, while these are uncorrelated with the

error term under the moment assumption.

Using this set of instruments, I implement the two-step efficient generalized method of
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moments (GMM) estimation proposed by ?. Now, the non-linear search becomes

min
θ

g(θ)′Wg(θ), (13)

where g(θ) = ξ(θ)′Z/N and W is the weighting matrix. The choice of initial weighting

matrix is (Z′Z)−1/N , where Z is the IV matrix and N is the number of observations. The ef-

ficient weighting matrix is computed from the estimation results in the first stage: Z ′ξ̂ξ̂Z/N ,

where ξ̂ is the vector of residuals obtained in the first stage.

6.1.2 Identification of λ

Note that if Bj is a unit set, parameter λ disappears from Eq.(??) and the equation

reduces to the estimation equation derived from the standard logit model. This indicates

that the presence of λ is the key difference between the model introduced in this paper

and the standard model. Thus, I need to examine what variation of the data allows me

to identify the parameter λ. To understand the identification issue, consider the simplified

case in which all variants have the same price and characteristics; that is, pjn = pj for all

n ∈ Bj and K = Kj for all j ∈ J . Now, the second term on the RHS of Eq.(??) becomes

αpj + λ ln(Nj), where Nj is the number of variants of model j. This clearly indicates that λ

can be identified in the presence of difference in number of variants over models. Without

this simplification, the variant-level difference in prices and characteristics over models would

contribute to identifying λ, in addition to the number of variants.

6.2 Random coefficient

I now turn to the estimation of the model in the presence of random coefficients in the

utility function. The estimation incorporates a well-known contraction mapping procedure

proposed by Berry, Levinsohn, and Pakes (1995).

To apply BLP’s contraction mapping, I first define the following:

δ̄j ≡
∑
k∈K̄

xjkβk + ξj and Īij ≡
∑

k∈Kj\K̄ xjkβk + µij

λ
+ Iij, (14)

where K̄ =
∩

j∈J Kj, the set of characteristics common to all variants for every model. Then,

the individual choice probability on model j in eq.(??) can be rewritten as

sij =
eδ̄j+λĪij

1 +
∑

l∈J eδ̄l+λĪil
. (15)
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Assume that θ1 = (βk)k∈K̄, the vector of parameters in δ̄j, and θ2 =

(α, (βk)k∈K\K̄, (σk)k∈K, λ), the vector of parameters in Īij. For an arbitrary θ2, the com-

mon utility part δ̄ = (δ̄j)j∈J that makes sj = sj(δ̄;θ2) for all j ∈ J can be obtained by

computing the following series:

δ̄h+1 = δ̄h + ln sj − ln sj(δ̄
h;θ2), (16)

where superscript h indicates the number of iterations. Convergence is achieved if ||δ̄h+1−δ̄h||
becomes smaller than a certain tolerance level.

Likewise the case of no random coefficient, the parameters (θ1,θ2) can be estimated by

solving the problem specified in eq. (??), though the contraction mapping procedure is

incorporated here.

6.3 Estimation results

In this section, I report the estimation results. The results of no random coefficient

are shown in Table 6. Table 6 (i) and (ii) give the results for the cases of non-linear least

squares (NLS) and non-linear GMM estimation. As mentioned previously, the prices and

unobserved characteristics are likely to be positively correlated, thus inducing an upward

bias in the estimation of the price coefficient. Along with this argument, Table 6 (i) and

(ii) show that the price coefficient α becomes lower after instrumenting. The estimate of λ

lies between 0 and 1; this indicates that the estimates are consistent with the random utility

maximization problem. Because the estimate of λ is significantly different from 1, I reject

the logit model: the substitution between variants within a model is stronger than that

between the variants across models. Most of the other coefficients have a reasonable sign;

for example, the coefficient of Fuel Cost is negative and significant. The sole exception is

the coefficient of Cruise Control, which is expected to be negative; the results show negative

estimates, but it is not statistically significant in (ii).

Next I turn to the random coefficient model. The result of GMM estimation is shown in

Table 7. Here, Constant and Car Space are allowed to have random coefficients. First, the

price coefficient is statistically significant. Second, most of the mean parameters are reason-

ably estimated. The exception is Cruise Control whose coefficient takes a negative value;

however, this is not statistically significant. Third, the estimates of standard deviations are

small, but their standard errors are huge. This is clearly problematic because the preference

on car space and the tendency to purchase new cars should be different across consumers.
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7 Simulation

Using the estimates in Section 5, I carry out counterfactual simulation to assess the

impacts of the tax incentives from April 2012 to March 2014. I do not incorporate the

supply side, but simply construct the counterfactual price, pcjn , by adding the amount of tax

reduction to the actual price, pjn . Given p∗jn , I compute the counterfactual sales based on

the demand estimates.

The simulation results are summarized in Table 8. I focus on the effects on green cars,

namely, plug-in hybrid and clean diesel cars and cars complying with the 2015 fuel economy

standards. The second column of the table shows the actual sales; that is, the sales with

policy. Because the data of variant-level sales are unavailable, the values are computed from

the demand estimates. As shown in Table 8 (i), subsidies and tax incentives increased the

green car sales by 4–4.6% in fiscal years 2012 and 2013. The effects are moderate, but those

on clean diesel and plug-in hybrid cars are larger: the policies increased the sales by 7.7–9%,

as shown in Table 8 (ii).

8 Conclusion

The variant-level heterogeneity in car markets is substantial; thus, the assessment of

attribute-based policy interventions should account for the differences in effects of policy at

the variant level. This paper presents a discrete choice model of product differentiation at

the variant level and estimates the model’s structural parameters using the data at different

levels of aggregation: model-level sales and variant-level prices and attributes. From these

estimates, I assess the measures to promote green cars in Japan.

The simulation results show that policies increased the sales of green cars by 4–4.6% in

fiscal years 2012 and 2013. The increase in sales of plug-in hybrid and clean diesel cars are

larger, namely, 7.7–9%. The results indicate that policies have some impacts on the diffusion

of green cars.
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Weight 2015 Fuel Economy Standards
–600kg 22.5 km/l

601–740kg 21.8 km/l
741–855kg 21 km/l
856–970kg 20.8 km/l
971–1080kg 20.5 km/l
1081–1195kg 18.7 km/l
1196–1310kg 17.2 km/l
1311–1420kg 15.8 km/l
1421– 1530kg 14.4 km/l
1531–1650kg 13.2 km/l
1651–1760kg 12.2 km/l
1761–1870kg 11.1 km/l
1871–1990kg 10.2 km/l
1991–2100kg 9.4 km/l
2101–2270kg 8.7 km/l
2271kg– 7.4 km/l

Note: The calculation of fuel economies are based on the JCO8 mode.

Table 1: Fuel economy standards
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Variables Mean Std. Dev. Max-Min (Max - Min)/Min
Price (mil. JPY) 2.941 0.326 0.906 0.398
Car Size(m3) 11.900 0.128 0.262 0.021
Wheelbase (m) 2.643 0.007 0.013 0.005

Engine Displacement (1000 cc) 1.949 0.085 0.194 0.098
Capacity (l) 53.235 0.842 1.735 0.042

HP (ps)/Weight (kg) 0.104 0.008 0.021 0.244
Weight (1000kg) 1.381 0.045 0.115 0.091

Fuel Economy (km/l) 16.216 1.293 3.211 0.229

Table 4: Variant-level heterogeneity
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(i) NLS (ii) GMM
Variables Coef. S. E. Coef. S. E.

Price -0.225 0.037 -0.763 0.203
Fuel Cost -0.256 0.016 -0.280 0.019
Car Space 0.430 0.071 0.635 0.093
Car Size -0.048 0.040 -0.183 0.062

Engine Displacement 0.141 0.109 1.044 0.345
Horse Power/Weight 7.641 2.049 7.177 2.117

Diameter -0.035 0.162 -0.154 0.164
4WD 0.913 0.131 1.225 0.159
FR 0.375 0.117 0.725 0.192

Cruise Control -0.308 0.113 -0.170 0.131
Power Seat 0.023 0.142 0.720 0.257

Stability Control System 0.644 0.074 0.623 0.088
Const -8.600 0.666 -6.900 0.875
λ 0.554 0.128 0.308 0.187

Note: Monthly dummy variables and brand dummy variables are included in the estimation.

Table 5: Estimation results: no random coefficient

Mean(β) Std. Dev.(σ)
Variables Coef. S. E. Coef. S. E.

Price - - -1.782 0.766
Fuel Cost -0.249 0.030 - -
Car Space 0.406 0.200 0.012 2.074
Car Size -0.047 0.054 - -

Engine Displacement 0.186 0.216 - -
Horse Power/Weight 6.282 2.238 - -

Diameter 0.078 0.196 - -
4WD 0.853 0.105 - -
FR 0.429 0.121 - -

Cruise Control -0.283 0.244 - -
Power Seat 0.043 0.216 - -

Stability Control System 0.658 0.115 - -
Const -8.757 2.912 0.066 6.364
λ 0.597 0.213 - -

Note: Monthly dummy variables and brand dummy variables are included in the estimation.

Table 6: Estimation results: random coefficient
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(i) Green Cars (1000 unit)
Year With Policies Without Policies Difference Rate of Change (%)
2012 2415 2310 105 4.56
2013 2646 2545 102 4.00

(ii) Clean Diesel and Plug-in Hybrid (1000 unit)
Year With Policies Without Policies Difference Rate of Change (%)
2012 23 21 2 8.96
2013 45 42 3 7.65

Note: Green cars are cars complying with 2015 fuel economy standards or clean diesel or
plug-in hybrid cars.

Table 7: Effects on Green Cars
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Figure 1: Shares of variants meeting 2015 Fuel Economy Standards
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