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Abstract
In this paper, we study an individual who faces a three-period decision problem when she accepts
the partitional signal twice at the different times. Adding a new axiom to a Third-Order Belief
Representation in Takeoka (2007), we characterize a Two-Stage-Partitional Representation, which
make the property of signals more flexible. And, under the context of a Two-Stage-Partitional
Representation, we show the subjective version of Dynamic Consistency among two different
preference relations over menus.
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1 Introduction

1.1 Background

In our dairy decisions, probabilities are not given while in von Neumann-Morgenstern Expected
Utility Theorem, probabilities are given. This implies assuming that probabilities are taken as
primitives is restrictive. Instead, it is realistic for a Decision Maker (henceforth DM) not to choose her
probability but to choose her action.

Since the consequence of her action is uncertain, we consider a state space to model the uncertainty.
Subjective probability models assuming that a state space is taken as a primitive are introduced by
Savege (1954) and Anscombe-Aumann (1963). In their models, however, their assumptions are
restrictive because assuming that a state space is taken as a primitive means that an observer knows
all the uncertainties she faces. Therefore, a state space should not be taken as a primitive and it should
be derived in the model.

The derivation of a subjective state space is studied by Kreps (1979). He considers preference over
menus of alternatives to derive the subjective state space. If the DM knows that she has the
uncertainties regarding her future preference over alternatives, her ranking of menus reflects how she
perceives the future uncertainties. From the ranking of menus, Kreps derives the set of future
preferences - the set of possible ex post preferences, which is called the subjective state space.

However, the subjective state space is not decided uniquely in Kreps. This problem is solved in Dekel,
Lipman and Rustichini (2001, henceforth DLR). DLR refines Kreps by enriching the choice object to
menus of lotteries over alternatives. In both Kreps and DLR, an observer can identify all the
uncertainties she perceives by the derivation of a subjective state space but an observer can’t identify
how the DM expects uncertainties to be resolved as time goes on.

Takeoka (2007) derives the subjective state space and the filtration in a dynamic setting without
taking them as primitives by considering preference over menus of menus of Anscombe-Aumann acts.
Moreover, Takeoka identifies the subjective probability measure on the subjective state space which
is not identified even in DLR because the state-independence of risk preference is applied in Takeoka,
but the state-dependence of risk preference is applied in DLR.

On the other hand, under the menu setting, Dekel, Lipman, Rustichini and Sarver (2007) and Dekel
et al. (2009) develop DLR. Also Kochov (2007), Ergin and Sarver (2010), Higashi and Hyogo (2012)
study the extension of DLR by weakening DLR’s assumptions of Completeness, Independence and
Continuity, respectively. Furthermore, Ahn and Sarver (2013) discusses the unforeseen contingencies.
In the dynamic setting, Krishna and Sadowski (2014) shows Dynamic Preference for Flexibility
Representation by introducing a Markov Process on states of the world.

Our paper is located on an extension of these papers which deal with the subjective state space.



1.2 Motivation and Goal

Riella (2013) studies the appropriate version of Dynamic Consistency when the state space is
subjective. It’s natural for rational agents to follow the property of Dynamic Consistency when the
state space is exogenous, while it’s not easy to find whether it satisfies the property of Dynamic
Consistency when the state space is endogenous because an observer doesn’t know the state space the
DM faces. In Riella, the domain is the same as DLR, which is menus of lotteries over alternatives, and
a different setting from DLR is that an objective state signal is sent to a DM before choosing a menu.

In this paper, we pursue the subjective version of Dynamic Consistency using the framework of
Takeoka, which is a three-period decision problem that the DM accepts the belief signal twice at the
different times. In order to achieve our goal, we show a Two-Stage-Partitional Representation different
from Takeoka, in which the subjective signals are based on her belief so we can’t apply Riella’s method
directly. Therefore, we change the subjective belief signals to the subjective partitional signals to build
a new representation. It enables us to consider the subjective version of Dynamic Consistency. Riella
shows the subjective version of Dynamic Consistency by using the Flexibility Consistency when the
subjective state is finite and a state signal the DM faces is specific. On the other hand, we show? the
subjective version of Dynamic Consistency when the subjective state is finite and each signal the DM
faces is partition. Moreover, Riella focus on lotteries but ours on acts.

Our contributions are the followings. First of all, adding a new axiom to a Third-Order Belief
Representation in Takeoka, we characterize a Two-Stage-Partitional Representation, which is more
flexible (I explain it in section 3.4). Next, we show the subjective version of Dynamic Consistency

among two different preference relations over menus using a Two-Stage-Partitional Representation.

1.3 Related Literature and Outline
As related literatures, we should explain Dillenberger, Lleras, Sadowski and Takeoka (2014,
henceforth DLST) and Dillenberger and Sadowski (2014, henceforth DS).

In DLST, they work in a setup of menus of Anscombe-Aumann acts and send a subjective signal to
a DM at the point between choosing a menu and choosing an act. As a result, they represent Subjective
Learning Representation and Partition Learning Representation. Also in DLST, the information
structure is identified uniquely. In DS, they state Generalized-Partition Representation using DLST
framework and consider the subjective version of Dynamic Consistency. DS is probably the closest
paper to mine. However, compared to our model, the domain and the number of accepting signals are
different. In this sense, our paper is absolutely different from two papers above.

The remaining of the paper is organized as follows. In section 2, we summarize Takeoka and set some
axioms required later. In section 3, we add a new axiom and state the theorem of a Two-Stage-

Partitional Representation. In section 4, we consider the subjective version of Dynamic Consistency

2 We have to put a strong assumption. I explain it in section 4
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under the context of a Two-Stage-Partitional Representation. In section 5, we state the conclusion and

discuss the future work.

2  Preliminaries

As an extension of the previous literature mentioned above, our model is based on Takeoka. In our
model, the domain, primitives and periods of decisions are almost all the same as Takeoka but the
property of signals is different, which leads to totally different results. In detail, different from Takeoka
which uses the subjective belief signal, we use the subjective partitional signal in our model. In this

section, we provide an overview of Takeoka.?

2.1 Domain and Timing
Let Q be a finite objective state space (a DM may have some subjective states other than Q). Also

let Z be a non-empty finite set of outcomes and 4(Z) be the set of all Borel probability measures over
Z, which is a compact metric space under the weak metric convergence topology. Furthermore, he
calls h: Q — A(Z) an actand A= {h | Q — A(2)} the set of all acts, which is a compact metric space
under the product topology.

Let K(A) be the set of all non-empty compact subsets of . He calls K(A) with Hausdorff metric
menus of acts. Also let K(K(A)) be the set of all non-empty compact subsets of K( /) with Hausdorff
metric. He also calls K(K(Z)) menus of menus of acts. Consider preference x over K(K(A)).

The DM has in mind the following timing of decisions. In period 0, the DM chooses a menu of menus
of acts x, € K(K(A)); in period 17, she receives a subjective belief signal S; in period 1, she
chooses a menu of acts x; € x,; in period 27, she receives a subjective belief signal S?2; in period 2,
she chooses an act h € x,; in period 2%, a state is realized and she receives the lottery. We focus on

the dynamic situation in three stage decision making.

2.2 Axioms
We turn to the axiomatic foundation of the model. Takeoka considers the following axioms for a
binary relation z.

Axiom 1 (Order). % is complete and transitive.

AXxiom 2 (Continuity). For all x, € K(K(H)),

3 Takeoka defines a decision tree, which is a pair consisting of a state space and a filtration.
Depending on the DM’s exhibiting Preference for Flexibility, we can have a variety of subjective
decision trees. However, in our paper, we focus on the DM who exhibits Preference for Flexibility in
every periods.



{zy € K(K(H))| xg Z zp} and {z, € K(K(H))| zy = x,} are closed
Axiom 3 (Strong Non-degeneracy). There exists I, I’ € 4(Z) such that {{I}} > {{I’}}

Axiom 4 (Independence). For all x4, vy, zo € K(K(A)) and for all A€ (0, 1]
Xo>Yo D Axot (- zy > Ay, + (I-1) 2,

Axiom 5 (Monotonicity). For all x,, x'o € K(K(H)),

XgCx'g = x'g Z X

Axiom 6 (Aversion to Commitment). For all x’, € K(K(A)) and for all finite x, € K(K(H)),

1 !
x'oU {leexoxl} Z x'oU xg

Axiom 7 (Risk Preference Certainty).

Forall x, € K(K(H)), xq ~ o(x,)
Forany h € H, o,(h) € {h’ € H|{{h(w)}} = {{h(®)}} for all o}, for each x; € K(H), 01(x;) &
Ujex, 01(h), and for each x, € K(K(H)), o(x) = {01(x1) | X1 € x0}.

The first five axioms are standard. The sixth axiom, Aversion to Commitment, means that the DM
weakly wants to delay her decision. And the seventh axiom, Risk Preference Certainty, means that she

totally knows the ranking over lotteries.

2.3 Representation
Take any third-order belief u, € 4(4(4(2))) and non-constant continuous mixture linear function

u : A(Z) — R. Define the functional form U,: K(K(#)) — R.

Uo( o) = IA(A(Q))gg;; Uy (xq, ) dig () where

Usei ) = [y maxUa(hp) du(p) for u€ () and

Uz(hp) = Yweau(h(w))p(w) forp € 4(Q)

Uo € A(A(A(€2))) means her belief about the first signal (S) so that u € 4(4(Q)) is regarded as the
first signal (S1). Also the history of signals (S, S2) in the time line is denoted by p € 4(Q). We
should pay attention to applicants before the first signal (S*) denoted by u; € 4(4(Q)), and the
belief on Q just after the first signal (S1) denoted by 7 € 4(€) in order to smoothly progress our



discussion in section 3 although they’re not written above.

Definition 1. Preference = on K(K()) admits a Third-Order Belief Representation if there exists
a functional form above that represents z.

Theorem 1.% Preference x satisfies Axioms 1-7 if and only if it admits a Third-Order Belief
Representation.

3  Model

In this section, we provide the model setting and characterize a Two-Stage-Partitional Representation.
As mentioned above, the domain and primitives are quite similar to Takeoka but the timing of

decisions are different, which leads to totally different representation.

3.1 Setup

The DM has in mind the following timing of decisions:

In period 0, she chooses a menu of menus of acts x, € K(K(H)).
In period 17, she receives the first partition on Q: p. .

In period 1, she chooses a menu of acts x; € x,.
In period 27, she receives the second partition on Q: p,.
In period 2, she chooses an act h € x;.

In period 2%, a state is realized and she receives the lottery.

The only change towards Takeoka is the property of signals. Takeoka uses the subjective belief signal
suchas S* and S2. In our model, however, we use the subjective partitional signal say, p, and p,.

3.2 Axioms

We turn to the axiomatic foundation in our model. Takeoka considers the seven axioms above for a
binary relation Z and we add a new axiom to Takeoka in order to characterize a functional form in the
timing of decisions above. Before explaining a new axiom, we should introduce the concept of a
composite act.

Definition 2. A composite act f Ig is defined as follows. For any event I € 2%, and acts f, g € A,

4 In addition, Takeoka states on the uniqueness of the representation (u,,u) and it also pins down the
uniqueness of probability measure.



FIg(w) = fw) ifwe 1]

glw) ifwél

Axiom 8° (Indifference to State Contingent Commitment on Menus of Menus of Acts)
For all f, g € A, there exists I € 22, such that {{f Ig}}~{{f, g}}

Since {{f Ig}} means a commitment menu of menus of acts and {{f, g}} is the most flexible menu
of menus of acts, this axiom means that the DM is indifferent between committing to the composite

act, which she decides ex ante, and choosing one of two acts, which she decides ex post.

3.3 Two-Stage-Partitional Representation
Take any probability measure 6, on 4(Q) and non-constant continuous mixture linear function w:
A(Z) —R. Consider the functional form V: K(K(H)) — R.

Vo(x0) = Xnep, ax Vi(x1,11)61(1;)  where

Vix, 1) = Zrep, I};fg)l( Vo (h, 1) 01(12)

Vo(h 1) = Za)elz u(h(w)) 6y (w | 1)

0, € 4(€2) is an initial belief on Q and p, is the first subjective partitional signal and I, are partitions
which include each state space divided Q into p,. Similarly, p, is the second subjective partitional
signal given the first partitional signal and I, are partitions which include each state space divided Q
into p,.

Definition 3. Preference = on K(K(A)) admits a Two-Stage-Partitional Representation if there exists
a functional form above that represents z.

Theorem 2. Preference % satisfies Axioms 1-8 if and only if it admits a Two-Stage-Partitional
Representation.

Proof of Theorem 2
An idea in DLST can be applied here to prove Theorem 2. Necessity of the axioms is obvious.

Therefore, we show sufficiency.

5 As a development of the axiom used in DLST, this axiom is mentioned.



Proof.

What to be shown is that “signals in Third-Order Belief Representation are partition.” & “o(x) N
o(n’) = @ for all = with = # z>.”® The right direction part is obvious. Then we show the left direction
part.

Take U, a Third-Order Belief Representation. Now, assume that there exist = and n’ such that 7 # 7’
and o(m) N o(z’) # @. In addition, w* € a(x) N o(z’). Then, there exist acts f and g such that
Yo f@n(w) > ¥, g(w)n(w) and ¥, f(w)n'(w) < Y, glw)n'(w). Take ¢ > 0 sufficiently
small. Define g®(w) as follows:

gw)+ e if w= 0

g (w) = {g(w) if w+# w

Consider a menu of menus of acts {{f,g®}}. It is possible to choose g® from {{f, g®}} because
Yo fl)m'(w) < Xy glw)'(w).
Therefore, Uo({{f, g°}}) # Uo({{f, 9}}) and Uo({{f, g°}}) — Uo({{f. g}}) as € — 0.
What’s important is that f Ig8(w™) # f(w*) when {{f Ig¥}}~{{f, g°}} holds.
Fix e arbitrary and take & > 0 sufficiently small. Define f3(w) as follows:
s/ n_ ([flw)+8 if w= w

f(w)_{f(a)) if w+ w
Similarly, consider a menu of menus of acts {{f%, g¢}}. It is possible to choose f8 from {{f?, g®}}
because 3, f®(w)m(w) > X, g°(@)n(w).
Therefore, Uo({{f®, g°}}) # Uo({{f, °}}) and Uo({{f® g°}}) — Uo({{f, g}}) as s — 0.
Also there exists 7’ such that {{f® I'g®}} ~ {{f %, g°}}. As a result,

fer'giw?) = fo(w") = f(w) +38.
As the sequence {{f®I'g®}}s_, is in the compact set K(K(Z)), it converges to a point h in the
compact set. The discussion above leads to the following:

h(w") = f(w*) + 0= f(w")
and
h(w) e{{f (»), g°(w)}}
Thus, under an event [ c Q,
h=flg®

Therefore,

{ g7}y = {h~{{f. e’}

These results contradict with the idea that f Ig®(w*) # f(w*) when {{f Ig®}} ~ {{f, g°}} holds. m

6 & is a support of z, that is, o(r) € Q and = € 4(Q) is defined as the belief on Q just after the first
signal p € A(A4(<2)).



A Two-Stage-Partitional Representation is better to a Third-Order Belief Representation in two
ways. First, a Two-Stage-Partitional Representation captures a reality in the world much more than a
Third-Order Belief Representation. Next, we can consider the subjective version of Dynamic
Consistency using a Two-Stage-Partitional Representation. We discuss the first point with examples

in the next, while we consider the second point in section 4.

3.4 Examples of two Representations
The difference of the property between the belief signals and the partitional signals is caused by

different sources of information. Let’s consider the DM who will buy an asset in a three-period
decision game. She chooses a menu of menus today, and she will accept the first subjective signal
and chose a menu tomorrow, and she will accept the second subjective signal and chose an act the
day after tomorrow.

At first, we ponder over a Third-Order Belief Representation. Note that the information she accepts
twice at the different timings have to be correlated with each other, so we can think about the first
and second belief signals as a series of information which is dependent on each other over periods.
For example, we interpret the first belief signal as an expected value of GDP, and the second belief
signal as a definitive value of GDP.

On the other hand, in terms of the partitional signals, it’s not always the case that the information
she accepts twice at the different timings are correlated with one another, so it is sometimes possible
that we regard the first and second partitional signals as the information which are independent on
one another over periods’. For example, we interpret the first partitional signal as an exchange rate,

and the second partitional signal as a defective value of GDP.

4 Dynamic Consistency

Riella shows that Flexibility Consistency is equivalent to the subjective version of Dynamic
Consistency when the subjective state is finite and an objective state signal the DM faces is specific.
On the other hand, we consider building the proper version of Dynamic Consistency when the
subjective state is finite and each signal the DM faces is partition. In my setting, we have to put an
assumption that an observer can observe partitional signals.8Also, in terms of updating, even if some
states are unforeseen, which means she is aware of new states in the world over time, it can be

interpreted as a reverse Bayesian updating when the role of preference relation before signals and that

7 Everything is all right even if the information she accepts twice at the different timings are
correlated with one another.

8 This is a strong assumption because subjective signals are not identified in this
paper.



after signals are reversed.®

4.1 Setup

We work within the setup in our model shown in the section 3. Again, let us put an assumption that
an observer can observe partitional signals, which means he can observe the each partitional signal.
However, each partitional signal is interpreted by a DM, so an observer cannot realize how she

interprets each signal.

Definition 4. The following statements are defined.
1. Consider preference z over K(K(H)). Take any 6,,

Vo(xo) = 211‘5/’1 xrflea;i Vi (x1,11)04(1)

( Vilxy, ) = leepz Hé?cfvz(h'lz) 91(12)>
Vo(h o) = Ywer, u(h(w)) 01(w | I2)

2. Consider preference z* over K(4). For any two menus of acts « and S in the menu of menus x,,
a Z° B e ZIZEpZ max Vo(h 1) 01(;) = ZIZEpZ ‘f}é"é‘ Vo (h 13) 0,(13)

Vahl) = D u(h(@)6:(@ 1)

WEl,

3. Supp (6,)° =Q

We will use x* over menus to represent her preference just before the first partitional signal and
{Z v wer, (K=1,2,+, n')over menus to represent her preference just after the first partitional
signal. Condition 2 in the definition says she chooses a menu from the selected menu of menus
knowing that the partitional signal will come twice later in order to maximize her ex ante expected
utility, taking into account that she will choose the best act in the future. Condition 3 in the definition

asserts Q contains no redundant states.

4.2 Dynamic Consistency between Preferences over Menus
We consider Dynamic Consistency between preferences over menus for the following steps. In the

first step, we argue an objective state signal case. In the second step, we consider the partitional

signal case. That is, we firstargue x* and %", foreach w; € Q, which means a preference

° A reverse Bayesianism rule is first introduced in Karni and Viero (2013).

10 The support of &, for a given probability measure 6,. It means that every state in Q has positive
probability.

1 n is less than the number of states.
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relation when realizing the specific state w; € Q. And later we consider z* and { X", }w,er,,- AS
noticed above, there are two changes related to Riella: (1) acts rather than lotteries; and (2) the
partitional signal rather than the state signal. Define the Preference for Flexibility, which is due to
DLR.

Definition 5. Abinary relation x* over K() values flexibility more than x*,,. over K() if, for
any two menus « and g inthe menu of menus x, with g < a.

a>*wiﬂ=>a >* B

It is also well-known by DLR that z* values more than flexibility than ?,*wi if and only if the
subjective state space that represents =* is larger than the subjective state space that represents
Z" w;- The following definition is introduced by Riella, which is equivalent to the subjective version

of Dynamic Consistency in Riella.

Definition 6. Flexibility Consistency

For any menu a € K(#) and menu S € K(H)*? in the menu of menus x,, a >, Band B 2" «a
implies that there exists a menu y suchthat e U Uy ", aUy,but aUBUy >"alUy
Lemmal. If x* and x*,, satisfy Flexibility Consistency, then x* values flexibility more

than 2%,

It means that any disagreement between x* and x*,, isonly a desire for flexibility. z* values
more than z*,, . Note that we require the existence of y and g € K(H) due to a technical reason
in order to complete Theorem 3. The next lemma was shown by Riella. The following theorem is

the main result in the first step we state above.

Theorem 3. The following statements are equivalent.
1. z"and %%, satisfy Flexibility Consistency

2. LetQand w; be the unique subjective state space of x* and Xx*,,, respectively. For any two

menus a and B inthe menu of menus x, with
max V,(h 1) = ngvz(h, L) forall w € Q\ w;,

Proof of Theorem 3.

12 We define H={h|Q — int4(2)} and K(I) is the set of all subsets of .
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The way of this proof is almost all the same as the proof of main theorem in Riella. m

From now on, we consider the partitional signal case. Riella also states that multiple signals can be

interpreted as the partitional signal if the condition below holds.

Definition 7.
For every subset J of I, there exists menus @ and B in the menu of menus x, with 8 < «, such
that a ~*,, B forall w; € J,but a >* p.

Definition 8.
For any two menus a and 8 in the menu of menus xo, if a X*,, B forevery w; € Iy ,then

az* B

Definition 7 means any subsets of the relation in { *,,.}¢,er,, do not waste of all the flexibility

represented by z*.

Proposition 1. z* and x*,, satisfy Flexibility Consistency. { =*,, }w,er,, (K=1,2,+, n)and
z* satisfy Definition 7 and 8 if and only if the collection Iy, (k=1,2, e, n)used in { =", }oer,,

is a partition of Q.

Proof of Proposition 1.
The way of this proof is almost all the same as the proof of Proposition in Riella. m

The following result is our main theorem in section 4. Part2 in the theorem can be interpreted the
appropriate version of Dynamic Consistency when the subjective state is finite and each signal the

DM faces is partition.

Theorem 4. The following statements are equivalent.
1. 2" and %%, satisfy Flexibility Consistency. { 2" }wer, (K=1,2,¢,n)and z* satisfy

Definition 7 and 8.

2. LetQand I, be the unique subjective state space of =" and { X", }er,,. respectively. For

any two menus a and g in the menu of menus x, with
r}{lee(llez(h, I) = r}rlleasz(h, I,) forall w € Q\ Iy,

a 2" B S a zx, B

12



3. After the partitional signal, in terms of the belief of the state space, the Bayesian updating is

applied.

Proof of Theorem 4.
This part has been revised.

5 Conclusion and Discussion

In this paper, we show a Two-Stage-Partitional Representation and build the subjective version of
Dynamic Consistency among two different preference relations over menus before and after the first
signal when the subjective state is finite and each signal the DM faces is partition. Theorem 2 and
Theorem 4 are our main theorems.

However, changing the subjective partitional signal to the objective partitional signal in section 4 is
too restrictive. Therefore, as a future issue, we should consider the elicitation of both the first and the
second subjective partitional signal in the context of a Two-Stage-Partitional Representation so that

we will consider the subjective version of Dynamic Consistency without such a restrictive condition.
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