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Abstract

We solve the multi-store paradox by introducing interdependent payoff between the firms. We

show that firms set up multiple stores unless the degree of payoff interdependence is low. We also
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1 Introduction

Casual observations suggest that a firm often supplies several products that are mutually substitutable.

For example, Kellogg, Coca-Cola, and Nisshin supply several varieties of cereals, beverages, and instant

noodles. Most major automobile, consumer electronics, and cell phone companies produce various dif-

ferentiated products. In the spatial context, supermarkets and convenience stores often build multiple

stores. However, two influential works suggested that these casual observations are not supported by

economic theory. Martinez-Giralt and Neven (1988) formulated a model where duopolists choose to

open either one or two stores and then face price competition. They found that firms always choose to

open one store in equilibrium, even if the cost of setting up a store is zero. Establishing multiple stores

accelerates competition and reduces profits. Therefore, to relax competition, each firm establishes only

one store (in the product differentiation context, each firm supplies only one product). In contrast to

Schmalensee (1978), Judd (1985) showed that establishing multiple stores does not serve as a commit-

ment to entry deterrence, even when the cost of setting up each store is completely sunk. This problem

is called the “multi-store paradox.”

In this study, we introduce interdependent payoff functions into the duopoly model of Martinez-Giralt

and Neven (1988) and solve this paradox. We assume that each firm i maximizes πi − απj where πk

is firm k’s profit (k = i, j, j �= i) and α ∈ [0, 1) is the degree of interdependence of the payoff (i.e.,

the relative profit maximization approach). We show that firms set up multiple stores unless the degree

of interdependence is too small. We also find that when α is neither too high nor too low, two types

of equilibria coexist: the equilibria with intertwined stores (i.e., each firm locates its store between the

rival’s two stores) and with neighboring stores (i.e., each firm locates its second store next to its first

store).

The existence of a neighboring location equilibrium may explain the strategy of Seven-Eleven Japan,

the first and the largest convenience store chain in Japan. Seven-Eleven Japan follows an approach

called “strategic dominance,” setting up stores in narrow territories (Seven-Eleven Japan Corporate
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Profile 2013–2014, pp. 15) instead of establishing nation-wide store networks. The neighboring location

equilibrium is consistent with its strategy.

We now discuss the rationale for employing interdependent objective functions in a general context.

First, the evaluation of managerial performance is often based on the relative as well as absolute per-

formance of managers.1 Outperforming managers often obtain good positions in the management job

markets. Second, many laboratory (experimental) works have pointed out the importance of relative per-

formance.2 Third, as Armstrong and Huck (2010) convincingly discussed, concerns for relative profit are

very closely related to imitative behavior among competing firms, and this imitative behavior is observed

frequently.3 We believe that it is reasonable to consider that firms are not always profit-maximizers and

to apply this approach to the multi-store problem.

We can also interpret that α indicates the measure of the degree of toughness of competition; a

higher α indicates tougher competition.4 Following this interpretation, our result suggests that tougher

competition leads to a multi-store equilibrium, which further accelerates competition.

Some researchers have solved the multi-store paradox. Ishibashi (2003) showed that if there are one

incumbent and two or more new entrants, the incumbent may be able to deter entries by establishing

two stores. Tabuchi (2012) also showed that a model with three firms solves this problem. The driving

force in this study is completely different from any of existing works and our results provide a new story

1See Gibbons and Murphy (1990) for empirical evidence.
2See Armstrong and Huck (2010). In real world, it is also known that people are concerned with relative performance,

and it is not because of the monetary incentives. See Grieco et al. (1993) and Mastanduno (1991) in the context of political
science and Ariely (2008) in the context of behavioral economics. The payoff function based on relative wage or relative
wealth status has been intensively discussed in the macroeconomics context, as well. Keynes (1936) discussed the rigidity
of nominal wage based on relative wage. See also Akerlof and Yellen (1988) and Corneo and Jeanne (1997, 1999). and
Futagami and Shibata (1998). We believe that it is because the concern with relative performance is realistic, and thus has
been attracted interests of many macroeconomists.

3See Vega-Redondo (1997) for the model formulation of a related evolutionary game. He considered a quantity-setting
model in a homogeneous product market and showed that if firms myopically imitate the most profitable firm’s strategy,
the industry converges to a highly competitive outcome.

4For a general discussion of this approach and useful applications, see Matsumura et al. (2013) and Matsumura and
Okamura (2015). We can show that given the locations, the ratio between the profit margin (i.e., price minus marginal cost)
and the price, known as the Lerner index, is decreasing in α. This index is intensively adopted in the empirical literature
as a measure of the intensity of market competition in product markets. Furthermore, Matsumura and Matsushima (2012)
showed that collusion is less stable when α is larger under moderate conditions. In this sense, a larger α again indicates a
more competitive market.
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of multi-store equilibrium.

Murooka’s (2013) study is the most closely related to the present study. He also solved the multi-store

paradox in a duopoly model.5 He extended a model of Judd (1985) and investigated entry deterrence

by an incumbent. He showed that the incumbent maintains multiple stores if it can set up five or more

stores before the rival’s entry. In his model, it is assumed that the new entrant builds one store and the

incumbent builds multiple stores. In this study, however, we need not assume any asymmetry between

the two firms, and we show that both firms build multiple stores.

2 The Model

There is a circular market of length 1 where infinitely many consumers lie uniformly. Following Martinez-

Giralt and Neven (1988), two firms (K = A,B) choose their locations on the unit circle and then choose

prices. Each firm runs one or two stores and sells homogeneous goods. Let K1 and K2 be the locations of

the first and second stores of firmK (K = A,B), respectively. Without loss of generality, we assume that

K1 ≤ K2 and A1 = 0. K1 = K2 implies that firm K runs one store only. Let pKi (K = A,B, i = 1, 2)

be the price of the i-th store of firm K.

The game runs as follows: In the first stage, each firm independently chooses the locations of its two

stores. In the second stage, after observing the locations of the stores, each firm K independently chooses

the prices at the two stores. The payoff of firm K is given by UK = πK − απL (K,L = A,B, L �= K),

where πK is the profit of firm K and α ∈ [0, 1). As we discuss in the Introduction, α indicates the

degree of interdependence of the payoff function and/or the toughness of competition in the market. We

assume that both firms have an identical production cost function and that the marginal production

cost is constant. We normalize the marginal cost as zero.

The consumers have unit demands; that is, each consumes one or zero units of the product. Each

consumer derives a surplus from consumption (gross of price and transportation costs) equal to v. We

5As pointed out by Hendel and Neiva de Figueiredo (1997), in the context of spatial model, the strategic effect of
investment in duopoly is much stronger than that in oligopoly (n ≥ 3) and a duopoly and a triopoly model often yields
contrasting results. Thus, it is important to solve this paradox under the strongest strategic effect case (duopoly case)
because the multi-product appears under the competition between Coca-Cola and Pepsi or Aderans and Artnature.
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assume that v is so large that every consumer consumes one unit of the product. Because the two firms

produce the same physical product, a consumer living at point X ∈ [0, 1] chooses the lowest-cost store

that minimizes the sum of the transport cost and the price, τ(X − Ki)
2 + pKi, where τ is a positive

constant. For simplicity, we assume that τ = 1. Let the demand of store Ki (K = A,B, i = 1, 2) be

DKi. DKi depends on the locations and prices of stores, and is derived in the next section.

3 Equilibrium price

The game is solved by backward induction. We first discuss the second-stage game given the locations

of two firms. Following Martinez-Giralt and Neven (1988), we discuss the following two cases.

3.1 Intertwined stores

First, we consider the case where A1 ≤ B1 ≤ A2 ≤ B2. Let Xij be the consumer whose utility is

indifferent to buying from Bi at price pBi or Aj at price pAj. We have

Xij =
pBi − pAj

2τ(Bi −Aj)
+

Bi +Aj

2
.

The demand of each store is given by

DA1 = X11 + (1−X21),

DA2 = X22 −X12,

DB1 = X12 −X11,

DB2 = X21 −X22.

With these demand functions, firms independently choose their prices and maximize their payoffs.
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The first-order conditions are

2pA1(1 +B1 −B2) + PB2B1(−1 + α) + (1−B2)(pB1(−1 + α)−B1(1 +B1 −B2))

2B1(−1 +B2)
= 0,

2pA2(B1 −B2) + PB1(A2 −B2)(−1 + α) + (B1 −A2)(pB2(−1 + α) + (B2 −A2)(B1 −B2))

2(A2 −B1)(B2 −A2)
= 0,

2pB1A2 + PA1(A2 −B1)(−1 + α) +B1(pA2(−1 + α) +A2(B1 −A2))

2B1(B1 −A2)
= 0,

2pB2(−1 +A2) + PA2(−1 +B2)(−1 + α) + (A2 −B2)(pA1(−1 + α) + (1−A2)(−1 +B2))

2(A2 −B2)(−1 +B2)
= 0.

We can show that UK is quasi-concave with respect to prices, and, thus, the second-order conditions are
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satisfied. The first-order conditions lead to the following equilibrium prices:

p∗A1 =
B1(−1 +B2)

Z

{
A2

2[B
2
1(1 + α)2 +B2

2(1 + α)2

−2B1(1 + α)(−1 +B2 +B2α)− 2B2(1 + α)− (−1 + α)2]

+A2[−B2
1(1 + α)2 −B2

2(1 + α)2 +B1(2B2(1 + α)2 − 1− 4α+ α2) +B2(3 + α2)]

−B1B2(−1 + α)2
}
,

p∗A2 =
(A2 −B1)(A2 −B2)

Z

{
A2

2(1 +B1 −B2)(1 + α)[(B1 −B2)(1 + α) − 1 + α]

−A2(1 +B1 −B2)(1 + α)[(B1 −B2)(1 + α)− 1 + α]

−B1(−1 +B2)(−1 + α)2
}
,

p∗B1 =
B1(−A2 +B1)

Z

{
B2

1(1 + α)(−1 +A2)[1 − α+A2 +A2α]

+B1(1 + α)(−2B2 + 1)(−1 +A2)[1 − α+A2 +A2α]

+B2
2(A

2
2(1 + α)2 − 2A2α(1 + α) + 2(−1 + α))

+B2(−A2
2(1 + α)2 +A2(3α

2 + 1)− 2α+ 2)−A2(−1 + α)2
}
,

p∗B2 =
(−1 +B2)(−A2 +B2)

Z

{
B2

2A2(1 + α)[−2 +A2 +A2α]

−B2(1 + α)A2(1 + 2B2)[−2 +A2 +A2α]

+B2
1(A

2
2(1 + α)2 − 2A2α(1 + α)− (−1 + α)2) +B1B2(A2(1 + α)2 − 1− 4α+ α2)

}
,

where Z = (1 + α)
{−B2

1(−1 +A2)(−1 + α)2 − 2B1A2(−1 +A2)[B2(−3− 2α+ α2)− (−1− 2α+ α2)]

+B2
2A2(A2(−3− 2α+ α2) + 4) + 2B2A2(A2(1 + 2α− α2)− 2)A2

2(−1 + α)2
}
.

3.2 Neighboring stores

For the second case, suppose that A1 ≤ A2 ≤ B1 ≤ B2.
6 Let XK be the consumer whose utility is

indifferent to buying from firm K’s first store, located at K1, at price pK1 or its second store, located at

K2, at price pK2. We have

XK =
pK2 − pK1

2(K2 −K1)
+

K2 +K1

2
.

6Because of the symmetry of the circular market, a similar principle can also apply in the case where A1 ≤ B1 ≤ B2 ≤ A2.
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The demand functions for each store are as follows:

DA1 = XA + (1−X21),

DA2 = X12 −XA,

DB1 = XB −X12,

DB2 = X21 −XB .

Given these demand functions, firms independently choose their prices and maximize their payoffs.

The first-order conditions are

2pA1(1 +A2 −B2) + 2pA2(−1 +B2) +A2(pB2(−1 + α) + (1 +A2 −B2)(−1 +B2))

2A2(−1 +B2)
= 0,

2pA2B1 + 2pA1(A2 −B1) +A2(pB1(−1 + α) + (A2 −B1)B1)

2A2(A2 −B1)
= 0,

2pB1(A2 −B2)− 2pB2(A2 −B1) + (B1 −B2)(pA2(−1 + α)− (A2 −B1)(A2 −B2))

2(A2 −B1)(B1 −B2)
= 0,

2pB2(−1 +B1)− 2pB1(−1 +B2) + (B1 −B2)(pA1(−1 + α)− (−1 +B1)(−1 +B2))

2(B1 −B2)(−1 +B2)
= 0.

We can show that UK is quasi-concave with respect to prices, and, thus, the second-order conditions
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are satisfied. The first-order conditions lead to the following equilibrium prices:

p∗A1 =
(1−B2)

L

{−B2
1(1 + α)[A2(−3− 2α + α2) + 4]

+B1(B2(1 + α) − 3 + α)(A2(−3− 2α + α2) + 4)

+ A2(−1 + α)(B2(1− α2) + 2A2(1 + α)− 6 + 2α)
}
,

p∗A2 =
(−A2 +B1)

L

{−A2
2(−3− 2α+ α2)[B1(1 + α)−B2(1 + α) + 2]

−A2(1 + α)[B2
2(−3− 2α+ α2) +B2(B1(3 + 2α− α2) + 8− 4α) + 2(−1 + α)]

− 4(−1 +B2)((B2 −B1)(1 + α)− 3 + α)} ,

p∗B1 =
(−A2 +B1)

L

{
B2

1(−3− 2α+ α2)[A2(1 + α)− 2]

+B1[−B2(1 + α)(A2(−3− 2α+ α2) + 4) + 2(−1 + α2)]

+ 2B2
2(−1 + α2)− 2B2(2A2(1 + α)− 7 + 2α+ α2) + 4(A2(1 + α)− 3 + α)

}
,

p∗B2 =
(1−B2)

L

{
B2

2(−3− 2α+ α2)[A2(1 + α)− 2]

+B2(1 + α)[−B1(A2(−3− 2α+ α2) + 4)− (A2
2(−3− 2α + α2) +A2(5− 6α + α2) + 6− 2α)]

+2B2
1(−1 + α2) +B1(−3 + α)(A2

2(1 + α)2 +A2(−3− 2α+ α2) + 2− 2α)

− 4A2(A2(1 + α) − 3 + α)} ,

where L = (−3− 2α+ α2)(B1(A2(−3− 2α+ α2) + 4) +B2(A2(3 + 2α− α2)− 4)− 4A2 + 4)).

4 Results

We substitute the equilibrium prices into the payoff functions, and derive the payoff function as a function

of location. In the first stage, each firm K independently chooses the locations of its stores.

We investigate how α affects the equilibrium locations of the stores. The following proposition states

the relationship between the equilibrium locations of stores and α:

Proposition 1 (i) (Single-Store Equilibrium) If α ∈ [0, 3− 2
√
2], then (A1, A2, B1, B2) = (0, 0, 1/2, 1/2)

constitutes an equilibrium.
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(ii) (Neighboring Location Equilibrium) If α ∈ (3− 2
√
2, α1], then

(A1, A2, B1, B2) = (0,
−1 + 6α− α2

4 + 4α
, 1/2, 1/2 +

−1 + 6α− α2

4 + 4α
)

constitutes an equilibrium where α1 � 0.58.

(iii) (Intertwined Location Equilibrium) If α ∈ [α2, 1), then (A1, A2, B1, B2) = (0, 1/2, 1/4, 3/4), consti-

tutes an equilibrium where α2 � 0.19.

Proof See the Appendix.

Proposition 1(i) implies that the result of Martinez-Giralt and Neven (1988) holds if α ≤ 3 − 2
√
2.

Martinez-Giralt and Neven (1988) already showed that when α = 0, (A1, A2, B1, B2) = (0, 0, 1/2, 1/2).

In other words, neither firm chooses two stores, even if the cost of setting up a store is zero. Setting

up two stores accelerates competition and reduces profits. Therefore, each firm avoids building multiple

stores in order to mitigate competition if the firms are close to profit-maximizers.

Proposition 1(ii–iii) imply that firms build multiple stores in equilibrium if α > 3 − 2
√
2. Given

A1 = 0, a slight increase in A2 from A2 = 0 accelerates competition between the two firms, reduces

prices at both firms, increases (res. decreases) the market share of firm A (res. B), and reduces both

firms’ profits. It reduces firm B’s profit more significantly because firm B suffers from both lower prices

and smaller market share, whereas firm A suffers from lower prices but gains from higher market share.

This creates the incentive for establishing two stores.

Proposition 1(ii–iii) imply that multiple equilibria exist if α ∈ (α2, α1). We explain the intuition as

follows: Suppose that α ∈ [α2, α1]. Then, suppose that firm B changes its locations from (B1, B2) =

(1/2, 1/2+ (−1+6α−α2)/(4+4α)) to (B1, B2) = (1/4, 3/4). This deviation increases the market share

of firm B and accelerates competition between the two firms. Given (B1, B2) = (1/4, 3/4), firm A’s

relocation from (A1, A2) = (0, (−1+6α−α2)/(4+4α)) to (A1, A2) = (0, 1/2) increases the market share

of firm A and further accelerates competition between the two firms. This competition-accelerating effect

(i.e., price-reducing effect) reduces firm B’s profit more significantly because the market share of firm

B is larger before the deviation. This may not hold if (B1, B2) = (1/2, 1/2 + (−1 + 6α − α2)/(4 + 4α))
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because the market share of firm B is the same as that of firm A before the deviation. Therefore, the

aforementioned relocation of firm A improves its payoff if (B1, B2) = (1/4, 3/4). However, if (B1, B2) =

(1/2, 1/2+(−1+6α−α2)/(4+4α)), firm A’s payoff does not improve. This leads to multiple equilibria.

Proposition 1(ii) discusses a neighboring location equilibrium where a store of firm A (res. B) is

located next to another store of firm A (res. B). The existence of a neighboring location equilibrium

may explain the strategy of Seven-Eleven Japan, the first and the largest convenience store chain in

Japan. Seven-Eleven Japan follows a strategy called “strategic dominance,” by which it sets up stores

in narrow territories instead of establishing nation-wide networks of stores.7 The neighboring location

equilibrium is consistent with its strategy. Similar strategies are observed in many Japanese chain stores

(Komoto, 1997).

5 Concluding Remarks

In this study, we revisited the multi-store paradox by introducing interdependent payoff functions. We

assumed that duopolists are concerned with both their own and their rival’s profits. We found that firms

set up multiple stores unless the degree of payoff interdependence is low. We also found that multiple

equilibria, intertwined and neighboring location equilibria, exist if the degree of payoff interdependence

is neither too low nor too high.

If the number of stores of each firm is an exogenous variable, an increase in the number of stores

accelerates competition and reduces firms’ profits. In this study, we showed that a large degree of

interdependence leads to multiple stores in equilibrium. As Matsumura et al. (2013) suggested, we

can interpret that the degree of payoff interdependence indicates the degree of toughness of competition.

Following this interpretation, our result suggested that tougher competition leads firms to set up multiple

stores in equilibrium. This result suggests the possible inverse causality of the traditional view; tougher

competition leads to multiple stores, and setting up multiple stores further accelerates competition.

7Regarding its store location strategy, Seven-Eleven Japan says “High-Density, Concentrated Store Openings (dominant
strategy) are the vital trajectory toward realizing close and convenient stores.” (Seven-Eleven Japan Corporate Profile
2013–2014, pp. 15).
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Our result contains another implication. We show that under tough competition, multi-store equilib-

ria appear. This result suggests a possible inverse causality of the traditional view; tougher competition

leads to multiple stores, and setting up multiple stores further accelerates competition.
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Appendix

Proof of Proposition 1(i)

We show that when α ∈ [0, 3 − 2
√
2], given (A1, A2) = (0, 0), the best reply for firm B is (B1, B2) =

(1/2, 1/2).

Because A1 = A2 = 0, firm B must establish neighboring locations. Let p∗A := p∗A1 = p∗A2. The payoff

of firm B, UB, is expressed as follows:

UB = πB − απA

= p∗B1

(
p∗B2 − p∗B1

2(B2 −B1)
+

B2 +B1

2
− p∗B1 − p∗A

2B1
− B1

2

)

+p∗B2

(
p∗B2 − p∗A
2(B2 − 1)

+
(B2 + 1)

2
− p∗B2 − p∗B1

2(B2 −B1)
− B2 +B1

2

)

−α

{
p∗A

(
p∗B1 − p∗A
2(B1)

+
(B1)

2
+ 1− p∗B2 − p∗A

2(B2 − 1)
− B2 + 1

2

)}
.

Let Θ = B2 −B1 be the distance between stores B1 and B2. The payoff function is rewritten as

UB = πB − απA

= p∗B1

(
p∗B2 − p∗B1

2Θ
+

Θ+ 2B1

2
− p∗B1 − p∗A

2B1
− B1

2

)

+p∗B2

(
p∗B2 − p∗A

2(Θ +B1 − 1)
+

(Θ +B1 + 1)

2
− p∗B2 − p∗B1

2Θ
− Θ+ 2B1

2

)

−α

{
p∗A

(
p∗B1 − p∗A
2(B1)

+
(B1)

2
+ 1− p∗B2 − p∗A

2(Θ +B1 − 1)
− Θ+B1 + 1

2

)}
.

The first-order condition with respect to B1 is

∂UB

∂B1
=

(−1 + Θ + 2B1)(−1 + α)(Θ2(−1 + α2) + Θ(3 + 2α− α2)− (−3 + α)2)

2(−1 + Θ)(−3 + α)2(1 + α)
= 0.

The second-order condition is satisfied.

We can show that Θ2(−1+α2)+Θ(3+2α−α2)− (−3+α)2 is strictly negative. Thus, the first-order

condition is satisfied if and only if (−1+Θ+2B1) = 0 (i.e., B1+B2 = 1). This implies that the locations

must be symmetric (i.e., 1/2−B1 = B2− 1/2). Substituting this condition into the first-order condition
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with respect to Θ , we have

∂UB

∂Θ
=

−3Θ2(−1 + α)2(1 + α) + 2Θ(−5− 5α+ α2 + α3)− 3− 19α − 9α2 + α3

8(−3 + α)2(1 + α)
.

We can show that ∂UB/∂Θ < 0 for all Θ ∈ [0, 1/2] if α ∈ [0, 3 − 2
√
2). Thus, Θ = 0 is optimal. In

addition, ∂UB/∂Θ = 0 for Θ = 0 if α = 3− 2
√
2. These two conditions (Θ = 0 and −1 + Θ + 2B1 = 0)

imply that the best reply for firm B is (B1, B2) = (1/2, 1/2) when α ∈ [0, 3 − 2
√
2].

By symmetry, given (B1, B2) = (1/2, 1/2), (A1, A2) = (0, 0) is the best reply for firm A if α ∈
[0, 3 − 2

√
2]. �

Proof of Proposition 1(ii)

We show that when α ∈ (3− 2
√
2, α1], given (A1, A2) = (0, (−1 + 6α−α2)/(4 + 4α)), the best reply for

firm B is (B1, B2) = (1/2, 1/2 + (−1 + 6α − α2)/(4 + 4α)). We take the following two steps: First, we

show that the above location is firm B’s optimal strategy for α ∈ (3 − 2
√
2, 1) in Neighboring. Second,

we allow firm B to establish intertwined locations and show that this never improves its payoff for

α ∈ (3 − 2
√
2, α1].

Suppose that firm B establishes neighboring locations. Suppose that α ∈ (3 − 2
√
2, 1). Let A2 be

(−1 + 6α− α2)/(4 + 4α). Given (A1, A2) = (0, A2), the payoff function of firm B in Neighboring is

UB = πB − απA

= p∗B1

(
p∗B2 − p∗B1

2(B2 −B1)
+

B2 +B1

2
− p∗B1 − p∗A2

2(B1 −A2)
− B1 +A2

2

)

+p∗B2

(
p∗B2 − p∗A1

2(B2 − 1)
+

(B2 + 1)

2
− p∗B2 − p∗B1

2(B2 −B1)
− B2 +B1

2

)

−α

{
p∗A1

(
p∗A2 − p∗A1

A2

+
A2

2
+ 1− p∗B2 − p∗A1

2(B2 − 1)
− B2 + 1

2

)

+ p∗A2

(
p∗B1 − p∗A2

2(B1 −A2)
+

(B1 +A2)

2
− p∗A2 − p∗A1

A2

− A2

2

)}
.
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Let B2 −B1 be Θ. The payoff function is rewritten as

UB = πB − απA

= p∗B1

(
p∗B2 − p∗B1

2Θ
+

B2 +B1

2
− p∗B1 − p∗A2

2(B1 −A2)
− B1 +A2

2

)

+p∗B2

(
p∗B2 − p∗A1

2(Θ +B1 − 1)
+

(Θ +B1 + 1)

2
− p∗B2 − p∗B1

2Θ
− Θ+ 2B1

2

)

−α

{
p∗A1

(
p∗A2 − p∗A1

A2

+
A2

2
+ 1− p∗B2 − p∗A1

2(ΘB1 − 1)
− Θ+B1 + 1

2

)

+ p∗A2

(
p∗B1 − p∗A2

2(B1 −A2)
+

(B1 +A2)

2
− p∗A2 − p∗A1

A2

− A2

2

)}
.

The first-order condition with respect to B1 is

∂UB

∂B1
=

(−1 + Θ−A2 + 2B1)(−1 + α)g
(
A2,Θ, α

)
2(−3 + α)2(1 + α)(Θ(A2(−3− 2α+ α2) + 4)2

= 0,

where g
(
A2,Θ, α

)
= A

3
2(−1 + α2)(Θ(−3− 2α+ α2) + 4)2

+A
2
2[Θ

3(−3 + α)2(−1 + α)(1 + α)3

+16Θ2(1 + α)2(7 + α− 5α2 + α3)(−69 + 68α − 6α2 − 12α3 + 3α4)

+4Θ(−41− 24α+ 36α2 + 6α3 − 11α4 + 2α5)]

+4A2[2Θ
3(1 + α)2(3− 4α + α2)− 2Θ(−41− 6α+ 24α2 − 10α3 + α4)

+Θ(−32− 21α + 22α2 + 4α3 − 6α4 + α5)− 4(15 − 5α− 3α2 + α3)]

+16[Θ3(−1 + α2)− 2Θ2(−2 + α)(1 + α) + 4Θ(−3 + α) + (−3 + α)2].

The second-order condition is satisfied. We can show that g
(
A2,Θ, α

)
is strictly negative. Thus, the

first-order condition is satisfied if and only if −1+Θ−A2+2B1 = 0. Taking another first-order condition,

∂UB/∂Θ = 0, and substituting the condition −1 + Θ−A2 + 2B1 = 0 into it, we have

∂UB

∂Θ
=

1

8(−3 + α)2(1 + α)

{
A

2
2(−1 + α)2(1 + α)− 3Θ2(−1 + α)2(1 + α)− 2A2(−1 + α)2(1 + α)

+ 2Θ(1 + α)(A2(−1 + α)2 + α2 − 5)− 3 + 19α − 9α2 + α3
}
= 0.
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The second-order condition is satisfied. The first-order condition leads to the following optimal Θ:

Θ∗ =
−1 + 6α− α2

4 + 4α
.

Therefore, the optimal neighboring location is

(B∗
1 , B

∗
2) = (1/2, 1/2 +

−1 + 6α− α2

4 + 4α
).

Next, we allow firm B to establish intertwined locations. Given (A1, A2) = (0, A2), the payoff function

of firm B in Intertwined is

UB = πB − απA

= p∗B1

(
p∗B1 − p∗A2

2(B1 −A2)
+

B1 +A2

2
− p∗B1 − p∗A1

2B1
− B1

2

)

+p∗B2

(
p∗B2 − p∗A1

2(B2 − 1)
+

(B2 + 1)

2
− p∗B2 − p∗A2

2(B2 −A2)
− B2 +A2

2

)

−α

{
p∗A1

(
p∗B1 − p∗A1

2B1
+

B1

2
+ 1− p∗B2 − p∗A1

2(B2 − 1)
− B2 + 1

2

)

+ p∗A2

(
p∗B2 − p∗A2

2(B2 −A2)
+

B2 +A2

2
− p∗B1 − p∗A2

2(B1 −A2)
− B1 +A2

2

)}
.

The two first-order conditions ∂UB/∂B1 = 0 and ∂UB/∂B2 = 0 are satisfied when (B1, B2) =

((−1 + 6α− α2)/(8 + 8α), (3 + 10α − α2)/(8 + 8α)). The second-order conditions are also satisfied.

Finally, we investigate whether the intertwined or the neighboring location is best for firm B. The

neighboring location (B1, B2) = (1/2, 1/2 + (−1 + 6α− α2)/(4 + 4α)) is the best reply for firm B if and

only if

UB(0,
−1 + 6α− α2

4 + 4α
, 1/2, 1/2 +

−1 + 6α − α2

4 + 4α
) =

(3− α)(−1 + α)2

16(1 + α)2

≥ UB(0,
−1 + 6α− α2

4 + 4α
,
−1 + 6α− α2

8 + 8α
,
3 + 10α − α2

8 + 8α
) =

2 + 11α− 26α2 + 20α3 − 8α4 + α5

64(1 + α)3
.

This holds true if and only if α ∈ (3− 2
√
2, α1], where α1 is a positive solution to the following equation

(3− α)(−1 + α)2

16(1 + α)2
=

2 + 11α− 26α2 + 20α3 − 8α4 + α5

64(1 + α)3
.
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By symmetry, given (B1, B2) = (1/2, 1/2 + (−1 + 6α − α2)/(4 + 4α)), (A1, A2) = (0, (−1 + 6α −
α2)/(4 + 4α)) is the best reply for firm A if α ∈ (3− 2

√
2, α1]. �

Proof of Proposition 1(iii)

We show that when α ∈ [α2, 1), given (A1, A2) = (0, 1/2), the best reply for firm B is (B1, B2) =

(1/4, 3/4). We perform the following two steps: First, we show that the above is the optimal strategy in

Intertwined. Second, we allow firm B to set up neighboring locations and show that this never improves

its payoff in these α.

Suppose that firm B established intertwined locations. Given (A1, A2) = (0, 1/2), the payoff of firm

B, UB , is

UB = πB − απA

= p∗B1

(
p∗B1 − p∗A2

2(B1 − 1
2)

+
B1 +

1
2

2
− p∗B1 − p∗A1

2B1
− B1

2

)

+p∗B2

(
p∗B2 − p∗A1

2(B2 − 1)
+

(B2 + 1)

2
− p∗B2 − p∗A2

2(B2 − 1
2 )

− B2 +
1
2

2

)

−α

{
p∗A1

(
p∗B1 − p∗A1

2B1
+

B1

2
+ 1− p∗B2 − p∗A1

2(B2 − 1)
− B2 + 1

2

)

+ p∗A2

(
p∗B2 − p∗A2

2(B2 − 1
2 )

+
B2 +

1
2

2
− p∗B1 − p∗A2

2(B1 − 1
2)

− B1 +
1
2

2

)}

The two first-order conditions ∂UB/∂B1 = 0 and ∂UB/∂B2 = 0 are satisfied when (B1, B2) =

(1/4, 3/4). The second-order conditions are also satisfied. We now allow firm B to establish neighboring
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locations. Given (A1, A2) = (0, 1/2), the payoff of firm B is

UB = πB − απA

= p∗B1

(
p∗B2 − p∗B1

2(B2 −B1)
+

B2 +B1

2
− p∗B1 − p∗A2

2(B1 − 1
2)

− B1 +
1
2

2

)

+p∗B2

(
p∗B2 − p∗A1

2(B2 − 1)
+

(B2 + 1)

2
− p∗B2 − p∗B1

2(B2 −B1)
− B2 +B1

2

)

−α

{
p∗A1

(
p∗A2 − p∗A1

1
+

1

4
+ 1− p∗B2 − p∗A1

2(B2 − 1)
− B2 + 1

2

)

+p∗A2

(
p∗B1 − p∗A2

2(B1 − 1
2)

+
(B1 +

1
2)

2
− p∗A2 − p∗A1

1
− 1

4

)}
.

Let B2 −B1 be Θ. The payoff function can be expressed by B1 and Θ.

UB = πB − απA

= p∗B1

(
p∗B2 − p∗B1

2Θ
+

Θ+ 2B1

2
− p∗B1 − p∗A2

2(B1 − 1
2)

− B1 +
1
2

2

)

+p∗B2

(
p∗B2 − p∗A1

2(B1 +Θ− 1)
+

(B1 +Θ+ 1)

2
− p∗B2 − p∗B1

2Θ
− Θ+ 2B1

2

)

−α

{
p∗A1

(
p∗A2 − p∗A1

1
+

1

4
+ 1− p∗B2 − p∗A1

2(B1 +Θ− 1)
− B1 +Θ+ 1

2

)

+ p∗A2

(
p∗B1 − p∗A2

2(B1 − 1
2)

+
(B1 +

1
2 )

2
− p∗A2 − p∗A1

1
− 1

4

)}
.

The first-order condition with respect to B1 is

∂UB

∂B1
=

(−3 + 2Θ + 4B1)(−1 + α)f (Θ, α)

8(−3 + α)2(1 + α)(Θ(5 − 2α+ α2))2
= 0,

where f (Θ, α) = 2Θ3(−1 + α)(5− 2α+ α2)2 +Θ2(129 + 48α − 15α2 − 8α3 − 45α4 + 24α5 − 5α6)

+16Θ(−33 + 33α− 32α2 + 22α3 − 7α4 + α5) + 16(25 − 26α + 11α2 − 2α3).

The second-order condition is satisfied. We can show that f (Θ, α) is strictly positive. Thus, the first-

order condition is satisfied if and only if −3 + 2Θ + 4B1 = 0. This implies that the locations must be

symmetric (i.e., 3/4−B1 = B2 − 3/4).
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Substituting this condition into ∂UB/∂Θ, we have

∂UB

∂Θ
=

−12Θ2(−1 + α)2(1 + α) + 4Θ(−9− 11α+ α2 + 3α3)− 15− 79α − 33α2 + α3

32(−3 + α)2(1 + α)
.

Let α4 be the solution for 15 − 79α + 33α2 − α3 = 0 in α ∈ [0, 1). We can show that ∂UB/∂Θ < 0

for all Θ ∈ [0, 1/2] if α ∈ [0, α4). Thus, Θ = 0 (and, thus, (B1, B2) = (3/4, 3/4)) is optimal among

neighboring locations if α ∈ [0, α4). If α ∈ [α4, 1), the first-order condition ∂UB/∂Θ = 0 leads to the

following optimal Θ:

Θ∗ =
−9− 2α+ 3α2

6(−1 + α)2
+

√
9 + 111α − 158α2 + 94α3 − 27α4 + 3α5

9(−1 + α)4(1 + α)
.

To sum up, given (A1, A2) = (0, 1/2), the optimal location among neighboring locations for firm B

is

(B∗
1 , B

∗
2) =

{
(34 ,

3
4) if 0 ≤ α < α4(

(3α2−8α+9)
6(α−1)2

−
√

(α−3)2(3α3−9α2+13α+1)
36(α−1)4(α+1)

, α(3α−5)
3(α−1)2

+
√

(α−3)2(α(3(α−3)α+13)+1)
36(α−1)4(α+1)

)
if α4 ≤ α < 1.

Finally, we investigate whether the intertwined or the neighboring location is best for firm B. The

intertwined location (B1, B2) = (1/4, 3/4) is the best reply for firm B if and only if UB(0, 1/2, 1/4, 3/4) ≥
UB(0, 1/2, B

∗
1 , B

∗
2). This holds true if and only if α ∈ [α2, 1), where α2 is a positive solution to the

equation

UB(0, 1/2, 1/4, 3/4) =
1− α

32(1 + α)
=

25− 69α + 31α2 − 3α3

64(−3 + α)2(1 + α)
= UB(0, 1/2, 3/4, 3/4).

By symmetry, given (B1, B2) = (1/4, 3/4), (A1, A2) = (0, 1/2) is the best reply for firm A if α ∈
[α2, 1). �
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