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Abstract

Much literature investigates that how an incumbent firm deters an entrant firm by crowding

in a differentiated product market. However, Judd (1985, RAND) shows that if the incumbent

can exit its stores after observing entrant’s location, then a spatial preemption is not credible

because the incumbent exits its stores to reduce price competition. This paper analyzes an

entry-exit game based on Hotelling’s location-then-price competition model on a unit circle. I

demonstrate that in some range of entry cost, spatial entry deterrence occurs in a subgame

perfect Nash equilibrium if the incumbent can built five stores or more. In this case, the

incumbent stays at least two stores so as to keep its market share. Since it intensifies price

competition, it lowers an upper bound of entrant’s equilibrium price in subgames and hence

entrant’s profit is strictly lower than a situation that only one incumbent store exists. Thus,

entrant does not enter the market because its revenue never makes up for its entry cost. It

implies that creating many stores itself can serve as a commitment device to crowd in the

market.

∗Department of Economics, University of California, Berkeley (E-mail: takeshi@econ.berkeley.edu).
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1 Introduction

It is well known that an incumbent firm hardly deters entry of an entrant firm. Much literature

analyzes that how incumbent firms deter entry by spatial preemption (Schmalensee 1978; Salop

1979b; Eaton and Lipsey 1979). However, a seminal work Judd (1985) shows that if the incumbent

can locate their stores only on two places and can exit its stores after observing a location of entrant,

then it has an ex post incentive to withdraw its stores in order to reduce price competition. Thus

the arguments of spatial entry deterrence do not hold unless the incumbent can commit not to

withdraw its stores.

Few literature investigates how the incumbent commits to stay its stores. Hadfield (1991) shows

that a franchise contract can serve as a commitment device. Ashiya (2000) analyzes that if multiple

entrants exist, then the incumbent may allow the entry of a weak entrant in order to prevent

strong one’s entry. Ishibashi (2003) shows that if multiple entrants exist and their entry timing is

endogenously determined, then spatial preemption is possible because each entrant wants to set its

store only after observing other entrant’s location. Wickelgren (2006) incorporates an uncertainty

about entrant’s production cost, and looks into properties of a mixed strategy equilibrium where

the incumbent exits with some probability. Yet as far as I know, there is no literature which

investigates whether credible spatial preemption is possible or not in an essentially same setting of

Judd (1985).

This paper analyzes an entry-exit game when the incumbent firm can locate its stores more

than two places. I investigate Hotelling’s location-then-price competition model on a unit circle

with linear shopping cost, which is explored by Vickrey (1999) and Salop (1979b). I demonstrate

that in a certain range of fixed entry cost, spatial entry deterrence occurs in a subgame perfect

Nash equilibrium if the incumbent can build five stores or more. It implies that the result in Judd

(1985) depends on the number of locations where the incumbent can create its stores.

There are two main logics to constitute the result. First, if the incumbent creates five equidistant

stores and stays at least two of them, entrant’s profit is strictly lower than the case that only one
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incumbent store remains. This is because staying more than one incumbent’s stores intensifies price

competition, hence it lowers an upper bound of entrant’s equilibrium price in subgames. Second,

the incumbent stays at least two stores so as to keep its market share, if the distance between some

of its stores and entrant’s store is not too close.

The result means that the incumbent firm can commit to fill in the market by creating many

stores. It can explain why incumbent firms in some industry produce differentiating similar products

(or build many stores) as mentioned in Schmalensee (1978), though they can stop creating the

products (exiting stores) with low costs.

In Section 2, I set up an entry-exit model based on Judd (1985). I analyze the model and prove

the main result in Section 3. In Section 4, I conclude and illustrate further researches.

2 The Model

In this section, I set up a following sequential entry-exit game with price competition on a unit

circle.

Suppose that a circular city model investigated by Vickrey (1999) and Salop (1979b). A con-

tinuum of consumer is uniformly located on a unit circle. Denote d(i, j) be a usual distance of

locations i and j on the circle.1

There are one incumbent and one entrant. They have a same fixed entry cost F per store and

a same constant marginal cost of production, normalized to 0.

Consumers can buy the product at most one unit. Their monetary value of the good is V > 0.

Suppose that consumer i pays a shopping cost t · d(i, j) if she buys the good in store j, where

t ∈ R++. Thus consumer i’s utility when she buys the good from store j with price pj is

V − pj − t · d(i, j).

If the consumer does not buy the good, then her utility is 0. Assume that V ≥ 3t so that every

consumer buys the good in equilibrium and the incumbent firm prefers a monopoly. Suppose that

1Precisely, set d(i, j) = |i− j| if i > j and i− j ≤ 1
2
, d(i, j) = |(1− i) + j| if i > j and i− j > 1

2
.
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each consumer buys the good from the closest located store if her utility is indifferent.

I analyze a following four-stage entry-exit game based on Judd (1985). Suppose that firms can

create their stores at any location on the circle.2 I consider a large incumbent and a small entrant

case: the incumbent can create stores as many as possible, though the entrant can manage at most

one store.

Stage 1. The incumbent chooses the number of creating stores and their locations. Denote X be the

set of selected locations and |X| = m. Though it can create its stores as many as possible, it

pays a fixed entry cost F > 0 per store.

Stage 2. After observing incumbent’s decision, the entrant chooses whether it enters the market by

paying fixed entry cost F > 0 and sets its location. Denote y ∈ [0, 1) be a selected location

if it enters.

Stage 3. After observing entrant’s decision, the incumbent chooses the number of exiting stores n ∈

{0, 1, · · · ,m}. Then it retrieves entry costs (or pays exit costs) n · αF where α ∈ R. α ≥ 0

represents a proportion of not-sunk cost, while α < 0 means a proportion of exit cost. Assume

that most of the fixed cost is sunk, or an exit cost exists.3 Let X ′ = (x1, · · · , xm−n) ⊂ X be

a set of remaining stores.

Stage 4. Firms simultaneously choose a price ps ∈ [0, V ] for each own store s. Denote πf ((px1 , · · · , pxm−n), py)

be a profit function of f ∈ {I, E} excluding fixed costs.

The time line of the game is illustrated on Figure 1.

3 Analysis

I demonstrate that a spatial entry deterrence occurs in a subgame perfect Nash equilibrium by

analyzing a case that the incumbent creates its stores on five equidistant locations, i.e., X =
2Judd (1985) assumes that firms can built their stores only on two locations.
3Precisely, I assume that α < 0.136 so that Lemma 2 holds. Judd (1985) assumes that α is negative.

4



Incumbent’s entry Entrant’s entry Price competitionIncumbent’s exit

Figure 1: Timing of Entry-Exit Game.

{0, 15 ,
2
5 ,

3
5 ,

4
5}.

3.1 Preliminaries

To prove the main result, I investigate equilibria in fourth stage subgames.

First, suppose that one of incumbent’s store is on the same location as entrant’s. Then a usual

price competition occurs, and both stores’ prices are zero in equilibrium regardless of incumbent’s

other locations. Hence πE = 0 in this case.

Second, consider a case of one incumbent store on x = 0 and one entrant store on y ∈ (0, 12 ]. I

illustrate the demand of incumbent’s store 0 in order to clarify the notion of undercut.

Suppose that p0 ∈ [py − ty, py + ty]. Consumer i ∈ (0, y] will purchase the product from store

0 rather than store y if

V − p0 − t(i− 0) > V − py − t(y − i) ⇐⇒ i <
1

2t
(py − p0 + ty).

Consumer i ∈ (y, 12 ] will never buy the product from store 0 in this case. Consumer i ∈ (12 , y + 1
2 ]

will purchase the product from store 0 rather than store y if

V − p0 − t(1− i) > V − py − t(i− y) ⇐⇒ 1− i <
1

2t
(py − p0 − ty + t).

Consumer i ∈ (y + 1
2 , 1) will always buy the product from store 0 in this case. Thus if p0 ∈

[py − ty, py + ty], then the total demand of store 0 is 1
2t(2py − 2p0 + t).

On the other hand, suppose that p0 < py − ty. Then in addition to the demand [0, y] ∪ (12 , 1),

every consumer i ∈ (y, 12 ] will purchase the product from store 0 rather than store y, because

V − p0 − t(i− 0) > V − py − t(i− y) ⇐⇒ p0 < py − ty.

5



Thus if a store 0 sets its price p0 < py − ty, the total demand is 1 and it sweeps all the demand of

store y. This is called that store 0’s price undercuts store y’s price.

Denote πf be an upper bound of firm f ’s profit. Kats (1995) shows that if there are only one

incumbent and one entrant, then πI , πE ≤ 0.25t hold for any equilibrium in subgame.

3.2 Lemmas

In this subsection, I prove three lemmas which constitute the main result.

First, I show that if the incumbent stays more than one store, then entrant’s profit is always

less than 0.25t. Denote y be entrant’s store. Let l and r be the closest incumbent’s stores such

that l < y < r.

Lemma 1. Consider the fourth stage subgame.

(i) Suppose that l− r = 1
5 . Set y ∈ (0, 1

10 ], l = 0 and r = 1
5 without loss of generality. Then for

any equilibrium in subgame, the upper bound of entrant’s profit is πE ≤ 0.02t.

(ii) Suppose that l − r = 2
5 . Set y ∈ (0, 15 ], l = 0 and r = 2

5 without loss of generality. Then for

any equilibrium in subgame, the upper bound of entrant’s profit is πE ≤ 0.16t.

(iii) Suppose that l − r = 3
5 . Set y ∈ (0, 3

10 ], l = 0 and r = 3
5 without loss of generality. Then

for any equilibrium in subgame, the upper bound of entrant’s profit is πE ≤ 169
900 t ≃ 0.188t.

(iv) Suppose that l− r = 4
5 . Set y ∈ (0, 25 ], l = 0 and r = 4

5 without loss of generality. Then for

any equilibrium in subgame, the upper bound of entrant’s profit is πE ≤ 49t
225 ≃ 0.218t.

Proof. In appendix. �

Intuitively, if the incumbent stays two stores or more, distance between incumbent stores and

an entrant store is closer than one incumbent store case. Hence each firm is more easily to undercut

other firm’s price and sweep its market. Since it intensifies price competition, it lowers an upper

bound of entrant’s equilibrium price in subgames, and hence entrant’s profit is strictly lower than

a situation that only one incumbent store exists.
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Second, I show that if the incumbent locates {0, 45} and the entrant locates y ∈ [ 310 ,
2
5 ], there

exists a pure strategy equilibrium in subgame such that the incumbent profit is more than 0.25t

and the entrant profit is less than 0.25t.

Lemma 2. Consider the fourth stage subgame such that the incumbent locates {0, 45} and the

entrant locates y ∈ [ 310 ,
2
5 ].

Then there exists a pure strategy equilibrium such that p∗0 = ( 7
15 + 1

6y)t, p
∗
4
5

= (35 − 1
6y)t and

p∗y = 7
15 t. Entrant’s equilibrium profit is π∗

E = 49
225 t ≃ 0.218t, and incumbent’s equilibrium profit

πI is equal or more than ≥ 64
225 t ≃ 0.284t for any y.

Proof. In appendix. �

The intuition is that, undercutting price is not profitable if a distance between each of incum-

bent’s stores and entrant’s store is not so close. Thus each firm does not undercut in equilibrium,

and chooses a pure strategy. Then the incumbent can earn more than one incumbent store case by

staying two stores, because it keeps larger market share in equilibrium.

Though other mixed strategy equilibria might exist in the subgames, it can be easily shown

that the equilibrium is unique in pure strategies. Thus it is plausible to predict this equilibrium in

the subgames.

Notice that if the incumbent sets five equidistant stores in stage 1 and it exits the closest three

stores to entrant’s store in stage 3, the above subgame occurs for any entrant’s location. That is,

Lemma 2 shows that if the incumbent creates five equidistant stores in stage 1, then the incumbent

stays at least two stores so as to keep its market share.

Third, I show that incumbent’s equilibrium profit is always less than 1.5t if the entrant enters

in the market.

Lemma 3. Consider the fourth stage subgames such that the entrant has a store in the market.

Then for any equilibrium in subgame, the upper bound of incumbent’s profit is πI ≤ 1.5t.

Proof. In appendix. �
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On the other hand, if the incumbent has one store or more and the entrant does not enter, then

the incumbent can earn at least V − 0.5t by setting its prices to V − 0.5t. Thus the incumbent

prefers to deter entry if consumer’s value of the good V is sufficiently large.

3.3 Main Result

Now I present the main result.

Proposition 1. If 0.218t ≃ 49
225 t < F < 0.25t, then a spatial entry deterrence occurs in a subgame

perfect Nash equilibrium.

Proof. By Lemma 2, in the third stage subgame the incumbent keeps at least two stores if it has

five equidistant location stores, i.e., X∗ = {0, 15 ,
2
5 ,

3
5 ,

4
5}. Then entrant’s profit is always less than

0.218t by Lemma 1. Thus in the second stage subgame, the entrant does not enter if the incumbent

builds its stores on five equidistant locations. In the first stage subgame, if the incumbent deters

entrant’s entry, it earns at least V − 0.5t − 5F including fixed costs. On the other hand, if the

incumbent does not deters the entry, it earns at most 1.5t− F including fixed costs by Lemma 3.

Since V ≥ 3t, in the first stage subgame the incumbent sets its stores so as to deter the entry. �

The intuition of the proposition is as follows. As the distance between incumbent’s store and

entrant’s store is close, the incentive to undercut the opponent’s price increases (the price compe-

tition becomes harsh). However, if the incumbent keeps more stores, then it can get much market

share in total. The effect of keeping the market share dominates the effect of reducing price com-

petition in the case of Lemma 2. Hence the incumbent does not exit some stores so as to keep its

market share. Moreover, the entrant does not have an incentive to undercut its price in this case,

because the benefit of sweeping the market share is less than the loss of decreasing price for the

existent consumers, if the increase of demand is not too big.4

4On the other hand, if the incumbent firm creates three or four equidistant stores and stays two or more stores,

then there exists no pure strategy equilibrium. This is because the distance is relatively close and the entrant has an

incentive to undercut incumbent’s price and sweep its consumers.
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Also, in any mixed strategy equilibrium in fourth subgame where the incumbent keeps two

stores or more, the upper bound of entrant’s profit is less than 0.218t. This is because if the one

firm sets too high price with positive probability, then the other firm has an incentive to undercut

it with probability 1. Hence the upper bound price must not be too high for each firm.

Notice that Proposition 1 neither excludes the possibility that the incumbent deters the entry

by building less than five stores, nor derives precise equilibrium strategies. This is because I derive

only the upper bounds of equilibrium prices and profits, and these results are enough to prove that

spatial preemption occurs in the above equilibrium.

4 Concluding Remarks

This paper investigates an entry-exit game based on Judd (1985). I demonstrate that in a certain

range of fixed cost, spatial entry deterrence occurs in a subgame perfect Nash equilibrium. This

is because creating many stores itself can serve as a commitment for an incumbent to keep more

than one store. Therefore, this paper explains why incumbent firms in some industry create many

stores to crowd in the market, although they can exit their stores with almost no costs.

To see the robustness of the result, suppose that both firms can exit in fourth stage subgame,

which is assumed in Judd (1985). Then by the same logic of Proposition 1, the incumbent can

credibly keep entrant’s equilibrium profit less than 0.218t. Thus the main result holds even if both

firms can exit in fourth stage subgame.

To conclude the paper, I illustrate some possible future researches. First, a natural extension of

the model is that how the credible spatial preemption result strengthens if the market is not a circler

city or shopping cost is not linear. For example, linear city, multi-dimensional city (e.g., square-

shape or disk) or convex shopping cost (e.g., quadratic) seems to be more reasonable to analyze

in some industries. Second, the method of deriving the upper bound of prices and profits may be

useful to characterize other Hotelling’s location-then-price games. For example, the method may

allow to partially characterize equilibria in entry game with a large incumbent and small multiple

9



entrants.

5 Appendix

In the following, suppose that the entrant does not choose the same location with any incumbent’s

store. Let FI(px1 , · · · , pxm−n) be a mixed strategy of incumbent and Fy(py) be a mixed strategy

of entrant in a fourth stage subgame, where F is a cumulative probability distribution. Define

Fxk
(pxk

) be a k-th coordinate projection of FI(px1 , · · · , pxm−n). Denote Ss be a support of Fs(ps).
5

Since ps ∈ [0, V ], each Ss is bounded. Let ps = maxSs.

5.1 Proof of Lemma 1

(i) It can be shown that no pure strategy equilibrium exists. However, a mixed strategy equilibrium

exists by applying Theorem 5∗ in Dasgupta and Maskin (1986).6

To see it, take any pure strategy of incumbent (px1 , · · · , pxm−n) such that pk undercuts ph (if

more than one entrant’s price undercuts ph, let pk be the lowest one among them). I show that it

is not a best response of any entrant’s mixed strategy Fy(py). First, suppose that py undercuts pk

with probability 1. In this case, py also undercuts ph with probability 1. Then the incumbent can

increase its profit by setting ph slightly higher than py. Second, suppose that py does not undercut

pk with probability 1. In this case, the incumbent can increase its profit by setting ph slightly

higher than pk. Therefore, incumbent’s any pure strategy (px1 , · · · , pxm−n) such that pk undercuts

ph is never best response. Thus without loss of generality, I can restrict incumbent’s action set

such that undercutting does not occur between its stores, that is, |pk − ph| ≤ t|k − h| for any

k, h ∈ {x1, · · · , xm−n}. Then discontinuities of profit functions occur only on |pk − py| = t|k − y|

for each k ∈ {x1, · · · , xm−n}. Other conditions of Theorem 5∗ in Dasgupta and Maskin (1986) can

be checked straightforwardly in the restricted action set.

Next, I show that p0 ≤ py + yt, p 1
5
≤ py + (15 − y)t, and py ≤ 1

4(
1
5 t + p0 + p 1

5
) hold in any

5The definition of support is the smallest closed set whose complement is measure zero.
6Existences of an equilibrium in other fourth stage subgames can be shown by the same logic.
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equilibrium.

Suppose that p0 > py + yt. Notice that by the above argument, undercutting between in-

cumbent’s stores with positive measure never occurs in equilibrium. Then there exists a positive

measure such that py undercuts a price of store 0 with probability 1. This is never optimal for the

incumbent, because it can increase its payoff by removing the top of the support of store 0’s mixed

strategy and depositing it on slightly higher than py (or the highest price of other incumbent’s

store). Thus p0 ≤ py + yt holds in equilibrium. By the same logic, p 1
5
≤ py + (15 − y)t holds in

equilibrium.

Notice that if py undercuts neither p0 nor p 1
5
, then the profit function of the entrant is

πE(py, p0, p 1
5
) = max{ 1

2t(
1
5 t+ p0+ p 1

5
− 2py), 0}py. Thus given that undercutting is not optimal for

the entrant, the best response is BRE(p0, p 1
5
) = 1

4(
1
5 t+ p0 + p 1

5
).

Suppose that py > 1
4(

1
5 t+p0+p 1

5
). Then py is strictly higher than BRE(p0, p 1

5
) for any (p0, p 1

5
)

in the support, because py neither undercuts p0 nor p 1
5
, and BRE(p0, p 1

5
) is strictly increasing in

p0 and p 1
5
. Then the entrant can increase its profit by removing the top of the support of its mixed

strategy and depositing it on a lower price. Formally, if p0 < py + yt and p 1
5
< py + (15 − y)t, then

the entrant can increase its profit by removing the top of the support of its mixed strategy and

depositing it on an adequate lower price, because there exists a positive measure of Fy(py) that

does not undercut any incumbent’s prices.7 Suppose that p0 = py + yt. Then Fy(py) has a mass at

py, otherwise the incumbent can increase its payoff by removing the top of the support of F0(p0)

and depositing it on py. Since py never undercuts any incumbent’s prices, the entrant can increase

its profit by removing the mass py of its mixed strategy and depositing it on an adequate lower

price. Proof of the case p 1
5
= py +(15 −y)t is same. Thus py ≤ 1

4(
1
5 t+p0+p 1

5
) holds in equilibrium.

Since py ≤ 1
4(

2
5 t + 2py) holds by the above three inequalities, I get py ≤ 1

10 t. Then the upper

bound of entrant’s equilibrium profit is πE(Fy(py), FI(p0, p 1
5
)) = πE(py, FI(p0, p 1

5
)) ≤ πE(py, p0, p 1

5
) ≤

1
5 · 1

10 t = 0.02t. �

7If 1
4
( 1
5
t+ p0 + p 1

5
) is not undercut with probability 1, choosing it is fine. If so, then pick a slightly higher price

than min{p0, p 1
5
}.
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(ii) By the same logic in (i), py ≤ 1
4(

4
5 t + 2py) holds in any equilibrium. Thus py ≤ 2

5 t holds.

Then the equilibrium expected payoff of entrant is πE(Fy(py), FI(p0, p 2
5
)) = πE(py, FI(p0, p 2

5
)) ≤

πE(py, p0, p 2
5
) ≤ 2

5 · 2
5 t = 0.16t. �

(iii) I need to check the following two cases; X ′ = {0, 35} and X ′ = {0, 35 ,
4
5}.

First, consider the case of X ′ = {0, 35}. By the same logic in (i), py does not undercuts

incumbent’s upper bound prices with positive measure, and py ≤ 1
4(

3
5 t + p0 + p 3

5
) holds in any

equilibrium. Notice that the arguments in (i) also hold for the incumbent. Thus p0 ≤ 1
4 [(

2
5 + y)t+

py + 2p 3
5
] and p 3

5
≤ 1

4 [(1 − y)t + py + 2p0] hold in any equilibrium. By adding these inequalities,

p0 + p 3
5
≤ 7

10 t + py holds. By substituting this into py ≤ 1
4(

3
5 t + p0 + p 3

5
), I get py ≤ 13

30 t and

p0 + p 3
5
≤ 17

15 t.

Then the upper bound of entrant’s equilibrium profit is πE(Fy(py), FI(p0, p 3
5
)) = πE(py, FI(p0, p 3

5
)) ≤

πE(py, p0, p 3
5
) = max{ 1

2t(
3
5 t+ p0 + p 3

5
− 2py), 0}py = 1

2t(
3
5 t+ p0 + p 3

5
− 2py)py ≤ 169

900 t ≃ 0.188t.

Second, consider the case of X ′ = {0, 35 ,
4
5}. By the same logic in (i), py does not undercuts

incumbent’s upper bound prices with positive measure, and py ≤ 1
4(

3
5 t + p0 + p 3

5
) holds in any

equilibrium. Notice that the arguments in (i) also hold for the incumbent. Thus p0 ≤ 1
4 [(

1
5 + y)t+

py + 2p 4
5
], p 3

5
≤ 1

4 [(
4
5 − y)t + py + 2p 4

5
] and p 4

5
≤ 1

4(
2
5 t + 2p0 + 2p 3

5
) hold in any equilibrium. By

adding these inequalities, p0 + p 3
5
≤ 7

10 t + py holds. The rest of proof is just same in the above

case. �

(iv) By the same logic in (i), py does not undercuts incumbent’s upper bound prices with positive

measure, and py ≤ 1
4(

4
5 t+ p0 + p 4

5
) holds in any equilibrium. Notice that the arguments in (i) also

hold for the incumbent. Thus p0 ≤ 1
4 [(

1
5 + y)t+ py + 2p 4

5
] and p 4

5
≤ 1

4 [(1− y)t+ py + 2p0] hold in

any equilibrium. By adding these inequalities, p0 + p 4
5
≤ 3

5 t + py holds. By substituting this into

py ≤ 1
4(

4
5 t+ p0 + p 4

5
), I get py ≤ 7

15 t and p0 + p 4
5
≤ 16

15 t.

Then the upper bound of entrant’s equilibrium profit is πE(Fy(py), FI(p0, p 4
5
)) = πE(py, FI(p0, p 4

5
)) ≤

πE(py, p0, p 4
5
) = max{ 1

2t(
4
5 t+ p0 + p 4

5
− 2py), 0}py = 1

2t(
4
5 t+ p0 + p 4

5
− 2py)py ≤ 49

225 t ≃ 0.218t. �
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5.2 Proof of Lemma 2

First, given p∗0, p
∗
4
5

and check the entrant’s incentive. Suppose that the entrant does not undercut any

incumbent’s store price. The demand of the entrant without undercutting is DE = max{ 1
2t(

4
5 t +

p∗0 + p∗4
5

− 2py), 0} = max{ 1
2t(

28
15 t − 2py), 0}. By maximizing πE = DEpy, it can be shown that

p∗y = 7
15 t and π∗

E = 49
225 t for any y. On the other hand, suppose that the entrant undercuts some

incumbent’s price. In order to undercut p∗0, the entrant has to set py < ( 7
15 +

1
6y)t−yt = ( 7

15 −
5
6y)t.

Also, in order to undercut p∗4
5

, the entrant has to set py < (35 −
1
6y)t− (45 − y)t = (−1

5 +
5
6y)t. Since

y ∈ [ 3
10 ,

2
5 ], the upper bound of entrant’s profit is

πE ≤ py < (
7

15
− 5

6
y)t ≤ 13

60
t <

49

225
t.

Therefore, given incumbent’s prices the entrant chooses p∗y = 7
15 t in equilibrium.

Similarly, given p∗y = 7
15 t, the demand of store 0 without undercutting is D0 = max{ 1

2t(
1
5 t +

ty + p∗y + p 4
5
− 2p0), 0} and the demand of store 4

5 without undercutting is D 4
5
= max{ 1

2t(t− ty +

p∗y + p0 − 2p 4
5
), 0}. Since the incumbent’s profit is πI = D0p0 + D 4

5
p 4

5
, it can be shown that the

incumbent does not have an incentive to undercut entrant’s price in equilibrium, and optimal price

tuple is p∗0 = ( 7
15 + 1

6y)t, p
∗
4
5

= (35 − 1
6y)t. The equilibrium profit satisfies π∗

I ≥ 64
225 t ≃ 0.284t for all

y ∈ [ 3
10 ,

2
5 ]. �

5.3 Proof of Lemma 3

Denote y be entrant’s store. Let l and r be the closest incumbent’s stores such that l < y < r. Set

l = 0 without loss of generality.

By the same logic in Lemma 1, py does not undercuts incumbent’s upper bound prices with

positive measure, and p0 ≤ py + yt, pr ≤ py + (r − y)t, and py ≤ 1
4(rt + p0 + pr) hold in any

equilibrium. By combining these inequalities, py ≤ rt holds. Since r ∈ (0, 1), py ≤ t holds for any

locations and equilibrium in subgames.

Take any incumbent’s store. If its price is more than 1.5t, then the entrant undercuts it with

probability 1. It implies the upper bound of incumbent’s equilibrium profit is less than 1.5t. �
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