Creaming Off and Hiring Discrimination Masataka lwata

School of Economics, Nagoya University of Commerce and Business Administration

'Do not return skimmed milk into the barrel of fresh milk.'

1

Point of Interest and Literature

- Hiring Discrimination
 - Taste-based Discrimination (like/dislike a particular type)
- Taste-based Discrimination

Becker (1957): 'Taste for discrimination' dissipated by segregationArrow (1973): Free entry drives discriminators awayStiglitz (1973): Segregation effect depends on complete informationBlack (1995): With search friction, taste effect survivesRosen (2003): An efficient individual level of discrimination (search)

Literature (cont'd)

• Statistical Discrimination

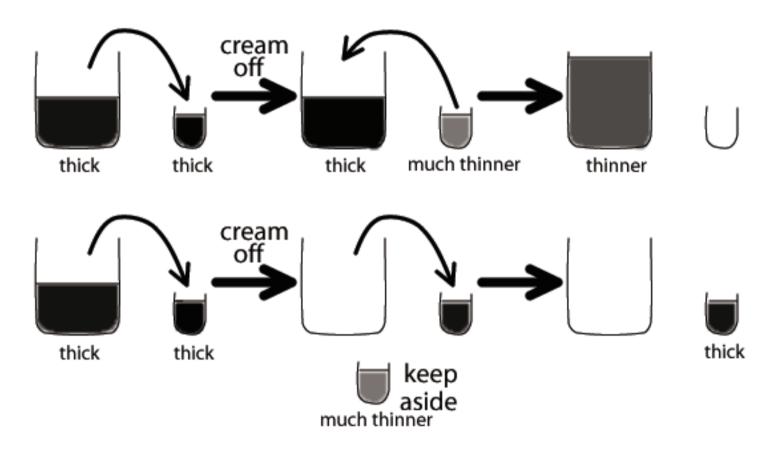
Arrow (1973): statistical discrimination is self-fulfilling Coate and Loury (1993): formal analysis and proof of Arrow's claim Arcidiacono (2003): discrimination \rightarrow disparity along experience Norman (2003): discrimination improves human capital efficiency

- Common Feature of Statistical Discrimination Research
 - : Interaction between discrimination and human capital investment
- Review: Cain (1986)

Current Method and Results: Overview

- 2 periods dynamic model, SPE notion
- Workers: resources, with types a and b (productivity-irrelevant) qualified and nonqualified workers (hidden symmetric proportion q)
- Firms: type-based screening, interviewing, and hiring
- Firms' manpower limit: cannot interview all the workers
- simultaneous shift in priority,
 - ex.) prefer a at period 1 and b at period 2: stable equilibrium
- egalitarian equil. without screening: unstable equilibrium
- the former eq. is more efficient than the latter disc. \rightarrow likely to interview each worker once and for all equal \rightarrow interview thinner unemployed pool at period 2

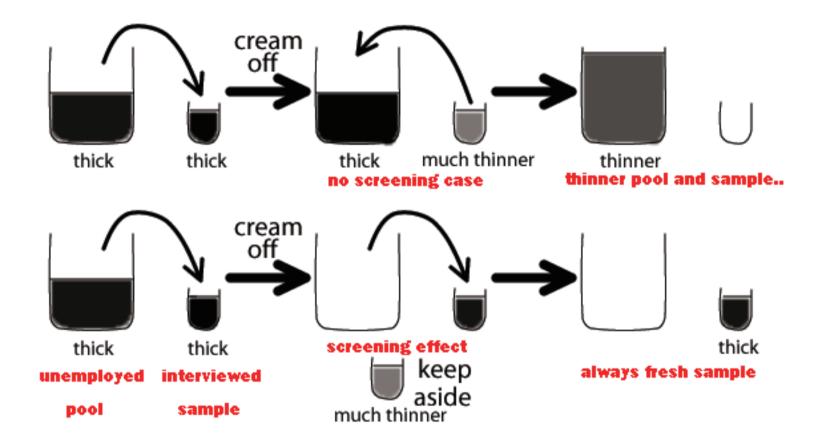
Current Paper and Related Literature


• Current Paper:

statistical discrimination without human capital investment issue

• Related:

Arcidiacono (2003): structural and dynamic cause of stat. disc. overlapping generations, OJT effect → multiple equilibria
Norman (2003): efficient discrimination
free riding on human capital investment
discrimination → more efficient skill-based specialization
Masters (2009): hiring-pattern-generated discrimination
hiring deteriorates unemployed pool quality
→ an interviewing precision level generates a dynamic equil.


Key Point Anecdote: taking cream from a barrel of fresh milk

 \rightarrow Divide the pool,

and cream off each of the division once and for all.

Key Point (cont'd)

\mathbf{Model}

- Workers and Firms
 - dynamic model with periods 1 and 2; each period the market opens
- continuum workers (size L) and profit maximizing firms (size F)
- proportion q (size qL) of workers are *qualified* a qualified worker + a firm \rightarrow able to produce payoff v
- workers are divided into types a and b: irrelevant to productivity
- limited manpower for each firm:

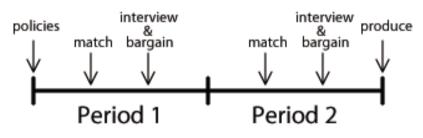
able to interview density m of workers each period

L > 2mF is assumed (\leftarrow critical)

- screening policies: $r{\rm ,}\ a{\rm ,}\ {\rm and}\ b$
- firm's strategy $\in \{r, a, b\} \times \{r, a, b\}$

(x,y): x at period 1, y at period 2

Model (cont'd, 1)


- Market Structure
- $F_r(t)$, $F_a(t)$, and $F_b(t)$:
 - the size of the firms following policy r, a, and b (resp.)
- Rationing:

1) *a*-firm: density $\min\{m, A(t)/F_a(t)\}$ of type *a* and $\max\{0, m - A(t)/F_a(t)\}$ of type *b* workers 2) *b*-firm: density $\max\{0, m - B(t)/F_b(t)\}$ of type *a* and $\min\{m, B(t)/F_b(t)\}$ of type *b* workers

3) *r*-firm:
density
$$m \cdot \frac{\max\{A(t) - mF_a(t), 0\}}{\max\{A(t) - mF_a(t), 0\} + \max\{B(t) - mF_b(t), 0\}}$$
 of type *a* and
 $m \cdot \frac{\max\{B(t) - mF_b(t), 0\}}{\max\{A(t) - mF_a(t), 0\} + \max\{B(t) - mF_b(t), 0\}}$ of type *b* workers

Model (cont'd, 2)

- Interviewing and Bargaining
- $(1 \epsilon_2)$ of qualified and ϵ_1 of nonqualified applicants are hired - $w_t(k) \equiv \alpha \left(\frac{q_t(k)(1 - \epsilon_2)}{q_t(k)(1 - \epsilon_2) + (1 - q_t(k))\epsilon_1} v \right) + (1 - \alpha)R_t(k)$
- $\alpha \in (0, 1)$: workers' bargaining power, $R_t(k)$: reservation value
- Intuitively: firms' recruiting activity during their rather slack seasons a certain fixed cost of advertisement \rightarrow finite number of periods
- \bullet Decision: at the beginning of period 1

Model Extension: Treaters

A representation of non-economic force that conducts discrimination

- proportion $\delta \in [0,1)$ (size δF) of firms are 'treaters'
- treaters follow policy a for $\rho \in \{1, 2\}$ periods from period 1 $\rho = 1 \rightarrow \text{maximize profit at period } 2$
- Candidates of their motive:

taste, governmental regulation (ex. employment protection), cultural/religious habit

Equilibria ($\delta = 0$ until 'Treaters' section)

Proposition 1:

If all the firms take (r, r), that strategy profile is an equilibrium.

: no firm has an incentive to deviate from the policy, because there appearrs no difference in 'thickness' between two types of workers.

Proposition 2:

If all the firms take (a, b) (resp. (b, a)), that strategy profile is an equilibrium.

: policy a at period 1 makes type b workers at period 2 thicker than type a workers. policy b at period 2 makes $R_1(b)$ $(w_1(b))$ higher than $R_1(a)$ $(w_1(a))$. $q_2(b) > q_2(a)$ is the essential condition.

Equilibria (cont'd)

- Stability issue
- the equilibrium $\left(r,r\right)$ is unstable against an intrusion of treaters
- the equilibrium (a,b) (resp. (b,a)) is stable

Proposition 3:

Each of the equilibria (a, b) and (b, a) exhibits better welfare than the equilibrium (r, r).

: higher frequency of matching with relatively thicker type of workers, particularly at period 2. This result crucially depends on the assumption L > 2mF. Only if there remains unmatched workers, the firms can improve their total welfare performance by minimizing the size of thicker type of unmatched workers.

Distribution

- demand side surplus $(DS(j,k) \ (j,k) \in \{(r,r), \ (a,b), \ (b,a)\})$ and supply side surplus $(SS(j,k) \ (j,k) \in \{(r,r), \ (a,b), \ (b,a)\})$
 - : integral of $v w_t(k)$ and $w_t(k)$ (resp.)
- $\bullet \; e(k;x,y) :$ employment rate for type k workers in the equilibrium (x,y)

Lemma 1:

- i) DS(a,b) > DS(r,r) and DS(b,a) > DS(r,r). ii) There exists a value $\alpha_0 \in [0,1)$ that satisfies SS(a,b) > SS(r,r)if $\alpha > \alpha_0$. A similar result stands for SS(b,a).
- : trade-off between employment and payment more bargaining power, more SS.

Distribution (cont'd, 1)

Lemma 2: i) If $\min(A, B) \ge mF$, $w_1(k; r, r) > w_1(a; a, b) = w_2(b; a, b) > w_2(k; r, r)$. ii) If A > mF > B, $w_1(k; r, r) > w_1(a; a, b) > w_2(b; a, b) > w_2(k; r, r) > w_2(a; a, b)$. iii) If B > mF > A, $w_1(b; a, b) > w_1(k; r, r) > w_1(a; a, b) > w_2(b; a, b) > w_2(k; r, r)$ where $(k \in \{a, b\})$.

Common Feature: $w_1(k; r, r) > w_1(a; a, b) \ge w_2(b; a, b) > w_2(k; r, r)$ disc. \rightarrow lessening the opprotunities of 'second interview' \rightarrow more eugal for majority, sometimes with extreme minority

Distribution (cont'd, 2)

Lemma 3:

i) Suppose $\min(A, B) \ge mF$. $\exists \gamma (> 1) \text{ s.t. } e(a; a, b) > e(a; r, r)$ (resp. e(b; a, b) > e(b; r, r)) iff $\gamma > A/B$ (resp. $\gamma > B/A$). ii) Suppose A > mF > B. $\exists \gamma_0 > 0$ s.t. e(a; a, b) > e(a; r, r) iff $\gamma_0 > A/B$. $\exists \mu^*$ s.t. $\gamma_0 > 1$ if $mF/L > \mu^*$. e(b; a, b) > e(b; r, r) stands without any additional condition. iii) omitted.

Common Feature: minority enjoy higher employment under disc. equal \rightarrow same probability of being interviewed disc. \rightarrow similar *size* of being interviewed Treaters $(\delta > 0, \text{ assume } \rho = 1)$

Notation: (x, y): a profile s.t. the non-treaters take the strategy (x, y)and the treaters take the strategy (a, y).

Large size of treaters $\rightarrow q_2(b) > q_2(a)$ guaranteed \rightarrow best responce at period 2 is $b \rightarrow$ equilibrum (b, a) does not exist $\rightarrow (a, b)$ is unique equilibrium

Lemma 4:

Suppose $\rho = 1$ and $\delta > 0$. The equilibrium (a, b) always exists. The equilibrium (b, a) exists if $\frac{A}{A+B} > \delta$.

Brief Summary

Two key points:

- 1) Discriminatory hiring behavior appears as the outcome of stable equilibrium and it shows better welfare performance than the egalitarian behavior
- 2) If the firms treat the minority preferentially, the wage level and employment rate for the minority tend to be better than those for the majority

Testable Cases

- Japan youth employment
- irregular mid-way hiring (chuto saiyo) v.s. regular hiring (teiki saiyo)
- cohort effect (Ohta, Genda, and Kondo 2008)
- substantial amount of the mid-way workers (Ministry of Labor 2009)
- new graduates as minorities seem to enjoy their privileged status
- China urban labor market

rural migrants v.s. city residents

- labor market segregation on both institutional and economic basis (Knight, Song, and Jia 1999, Demurger et al. 2006, etc.)
- dualism between the rural and city residents (Wang and Zuo 1999)
- hierarchy: privileged and successful elites, nonmigrant natives, temporary migrants (Fan 2002)

Policy Implication

Suspicion against the relevancy of anti-discriminative legislative schemes

If the economy is in the discriminatory equilibrium,

- Anti Discrimination Act: might punish just the profit maximizer
- Affirmative action: shift of equilibrium from discriminatory one to discriminatory another
- Population-based quota: dispel the discrimination, with some second-best welfare performance

Possible Extension

- Sector-wise discrimination
 - high productivity public sector and low productivity private sector
 - discrimination: public sector prefers city residents

private sector prefers migrants

- discrimination might be outcome of stable and efficient equilibrium
- Infinite horizon version (with migrants)
 - workers increase \rightarrow creaming off \rightarrow efficiency gain \rightarrow more workers
 - efficiency gain \rightarrow new firms entry \rightarrow more welfare \rightarrow more workers

Concluding Summary

- labor matching model with the manpower-based friction in interviewing process
- a pattern of welfare maximizing hiring discrimination
- minority side of workers tend to enjoy higher employment
- non-economic force may determine unique equilibrium
- testable cases as Japan youth employment and China urban labor market

Robustness

- results vulnerable in a dynamically extended version?
 - depends on specific manner of the extension. with n periods, as long as L > nmF is satisfied, the result is robust
- why not raise q or m?
- raise of q might lower v: trade-off, endogenous level of q
- limited $m \rightarrow$ limited total laborforce \rightarrow stationarily limited m

Note:

slight productivity difference between types $(q^a > q^b)$ might determine unique equilibrium ((a, b)).