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Abstract

We introduce a small cost of leading (small gain from waiting) in the two-player action

commitment game formulated by Hamilton and Slutsky (1990). We investigate a quantity

competition model with linear demand and constant marginal costs. We find that there ex-

ists a unique randomized strategy equilibrium as long as the leading cost is positive and not

too large. The randomized strategy equilibrium converges to the simultaneous-move equi-

librium (Cournot equilibrium) as the cost of leading approaches zero. We also investigate

a price competition model in differential product markets. We show that there exist ran-

domized strategy equilibria, and any of them converge to the simultaneous-move equilibrium

(Bertrand equilibrium).
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1 Introduction

In their pioneering work, Hamilton and Slutsky (1990) formulated two important models of the

endogenous timing game: observable delay game and action commitment game. Both models

have been intensively used as frameworks for analyzing the endogenous role in many subsequent

works.

In the action commitment game, Hamilton and Slutsky (1990) showed that three pure strat-

egy equilibria exist: two sequential-move outcomes (either player 1 or player 2 becomes the Stack-

elberg leader) and one simultaneous-move outcome (both players act in the first period such as

in the Cournot model and the Bertrand model). They also emphasized that the simultaneous-

move outcome is less plausible because the two sequential-move equilibria are the only pure

strategy equilibria in undominated strategies and the simultaneous-move outcome is supported

by weakly dominated strategies.

Further, many subsequent works have shown that the simultaneous-move outcome is vul-

nerable. Albæk (1992), Mailath (1993), Normann (1997), and Hirokawa and Sasaki (2000)

investigated incomplete information games wherein waiting players obtain additional informa-

tion on demand or cost. In other words, leading players lose some informational gain. They

show that while a slight informational gain from waiting eliminates the simultaneous-move equi-

librium where both players act in the first period, it does not eliminate the two sequential-move

outcomes. Robson (1990) and Matsumura (1997, 1999) showed that a slight inventory cost

yields the same result in complete information games. These results show that the set of equi-

librium outcomes is not lower hemi-continuous with respect to the cost of leading and that the

simultaneous-move outcome is an equilibrium only when the cost is strictly zero. This may

indicate that the simultaneous-move outcome (such as Bertrand and Cournot) is less plausible

in the endogenous timing game than the sequential-move outcomes (such as Stackelberg).

However, recent studies on laboratory experiments have suggested the opposite. Huck et

al. (2002) and Fonseca et al. (2005) examined quantity competition setting and reported

that the Stackelberg outcomes are rarely observed, while the Cournot outcome often appears.
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In this paper, we bridge the gap between the contrasting theoretical and empirical results by

investigating a randomized strategy equilibrium in the action commitment game.

In this paper, we introduce a small cost of leading into the action commitment game with

quantity competition. In the action commitment game with small leading costs, there are two

pure strategy equilibria (either player 1 or player 2 is the leader). Naturally, we expect that

there is a randomized strategy equilibrium, too. In fact, we find that a randomized strategy

equilibrium does exist and it converges to the simultaneous-move outcome when the cost of

leading converges to zero. Our result indicates that the simultaneous-move outcome is not as

vulnerable as the current literature insists. We can regard the simultaneous-move equilibrium

as a degenerate randomized strategy equilibrium, which is the unique symmetric equilibrium.

We also show that our main result does not depend on the assumptions of strategic substitutes

and/or the first-mover advantage, which typically appear in quantity competition models. We

investigate a price competition model in differentiated product markets. We find that the model

has randomized strategy equilibria and any of them converge to the Bertrand equilibrium under

the standard assumptions in the literature on Bertrand competition.

2 Quantity Competition

We formulate a duopoly model with quantity competition. Firms produce perfectly substitutable

commodities. Let yi denote the output of firm i (i = 1, 2). Let each firm’s marginal production

cost be c. The market demand is given by P (Y ) = a−Y (price as a function of quantity), where

Y = yi + yj is the total output of the duopolists. We assume that a > c.

We consider the action commitment game of Hamilton and Slutsky (1990) where firms first

choose the timing of their actions. The game is a complete information game. There are two

possible time stages for production choice and each firm chooses its output in only one of the

two stages. In the first stage, firm i independently chooses its output yi, or waits to produce

until the next stage. At the beginning of the second stage, each firm observes the rival’s output

produced in the first stage. In the second stage, only the firm i that has been waiting until the
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second stage produces its output yi.

The payoff of firm i (i, j = 1, 2, i �= j) is given by Ui = (P (Y )− c)yi − ε if firm i produces in

the first period and Ui = (P (Y )− c)yi if it produces in the second period, where ε indicates the

cost of leading. We assume that ε ∈ [0, (a − c)2/72).1

2.1 Fixed Timing Games

Before discussing the endogenous timing game formulated in the previous section, we investigate

the fixed timing games (simultaneous-move and sequential-move games).

2.1.1 Cournot game

Consider the simultaneous-move game where firm i (i = 1, 2) independently chooses yi. The

first-order condition is

a − 2yi − yj − c = 0. (1)

Let Ri(yj) be the reaction function of firm i in the Cournot game. It is given by

Ri(yj) =
1
2
(a − yj − c). (2)

Let the superscript ‘C’ denote the equilibrium outcome in the Cournot game. We have

yC
1 = yC

2 =
1
3
(a − c). (3)

2.1.2 Stackelberg game

Consider the sequential-move game where firm i chooses yi first and then firm j chooses yj

after observing yi (i, j = 1, 2, i �= j). Firm j chooses yj = Rj(yi) and firm i maximizes P (yi +

Rj(yi))yi − cyi − ε. Let the superscript ‘L’ and ‘F’ denote the equilibrium outcome of the leader

and the follower in the Stackelberg game, respectively. We have

yL
i =

1
2
(a − c), yF

j =
1
4
(a − c). (4)

1 If ε = (a − c)2/72, the three pure strategy equilibria again appear. One is a Cournot equilibrium wherein

both firms choose the second stage and the other two are Stackelberg equilibria. If ε > (a − c)2/72, the unique

equilibrium exists and it is a Cournot equilibrium.
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2.2 Results

We investigate the action commitment game. First, we present two results on the pure strategy

equilibria in the general context of the action commitment game.

Result 1 (Hamilton and Slutsky 1990) Suppose that ε is zero. There are three pure strategy

equilibria. One is the Cournot equilibrium where both firms choose to produce in the first stage.

The other two are Stackelberg equilibria where one firm chooses to produce in the first stage and

the other chooses to produce in the second stage.

Result 2 (Matsumura 1999) Suppose that ε is positive and sufficiently small. There are two

pure strategy equilibria and both are Stackelberg equilibria.

We now present our result. We discuss the randomized strategy equilibrium.

Proposition 1 Suppose that ε ∈ (0, (a− c)2/72). (i) There exists a unique randomized strategy

equilibrium and it is symmetric where each firm chooses the first stage with probability qE(ε) ∈
(0, 1). (ii) Let qE(ε) ∈ (0, 1) be the probability with which each firm chooses to produce in the

first stage in the unique randomized strategy equilibrium. Then qE(ε) is continuous and strictly

decreasing with limε→0 qE(ε) = 1 and limε→(a−c)2/72 qE(ε) = 0.

Proof See Appendix.

Three equilibria exist regardless of whether ε is zero or positive (as long as ε < (a− c)2/72).

When ε is zero, only pure strategy equilibria exist.2 When ε is strictly positive and sufficiently

small, two pure strategy equilibria and one randomized strategy equilibrium exist. Although

the set of pure strategy equilibria is discontinuous at ε = 0, this discontinuity disappears if

we consider randomized strategy equilibrium along with pure strategy equilibrium. We can

regard the Cournot equilibrium when ε = 0 as a degenerate randomized strategy equilibrium.

Our result indicates that the Cournot equilibrium is not so vulnerable if we pay attention to

randomized strategy equilibrium. We believe that as is suggested in the empirical works such as

2 Hamilton and Slutsky (1990) discussed that in the case with linear demand and equal constant marginal

costs, no equilibrium, symmetric or asymmetric, with mixing over the timing of actions exists.
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Huck et al. (2002) and Fonseca et al. (2005), the Cournot equilibrium is plausible in endogenous

timing contexts.

3 Price Competition

In the previous section we discussed quantity competition and showed that the randomized

strategy equilibrium converges to the Cournot equilibrium. In this section, we examine price

competition in differentiated product markets and show that the equilibrium also converges to

the Bertrand equilibrium.

3.1 Fixed Timing Games

Before discussing the endogenous timing game, we investigate the fixed timing game (simultaneous-

move and sequential-move games). We assume that the following fixed timing games have a

unique pure strategy equilibrium and that is stable. We also assume the interior solution.

3.1.1 Bertrand game

Consider the simultaneous-move game where firm i (i = 1, 2) independently chooses pi. The

payoff of firm i is given by Vi(pi, pj) (i = 1, 2, i �= j). We assume that Vi(pi, pj) is strictly concave,

continuously differentiable and increasing in pj. We also assume that |∂2Vi(pi, pj)/∂2pi| >

|∂2Vi(pi, pj)/∂pi∂pj |. This is a so called stability condition.3 These assumptions are standard

in the field.

The first-order condition is

∂Vi(pi, pj)
∂pi

= 0.

Let (pB
i , pB

j ) be the Bertrand equilibrium prices.

3.1.2 Stackelberg game

Consider the sequential-move game where firm i chooses pi first and then player j chooses pj

after observing pi (i, j = 1, 2, i �= j). Let Rj(pi) be the reaction function of firm j. We assume
3 See, among others, Vives (1985).
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that Rj(pi) is continuously differentiable and upward-slopping, i.e., R′
j > 0. Firm i maximizes

Vi(pi, Rj(pi)) − εi with respect to pi. The first-order condition is

∂Vi(pi, pj)
∂pi

+
∂Vi(pi, pj)

∂pj

dRj(pi)
dpi

= 0.

We assume that Vi(pi, Rj(pi)) is strictly concave. Let superscript ‘L’ and ‘F’ denote the equi-

librium outcome of the leader and the follower in the Stackelberg game. Let (pL
i , pF

j ) be the

equilibrium actions in the sequential-move game. We assume that pL
i > pF

i . This always holds

under the assumptions made above if two firms are symmetric. Needless to say, the symmetry

of the firms is not a necessary condition.

3.2 Results

We discuss the equilibria of the action commitment game. As in quantity competition, three pure

strategy equilibria exist when ε = 0, and two pure strategy equilibria (Stackelberg equilibria)

exist when ε is positive and small.

We now present our results on randomized strategy equilibria. Define ε̄i := Vi(pL
i , pF

j ) −
Vi(pB

i , pB
j ). We can show that ε̄i is strictly positive.

Proposition 2 Suppose that 0 < ε1 < ε̄1 and 0 < ε2 < ε̄2. (i) For any ε1, ε2, a randomized

strategy equilibrium exists. (ii) Take any sequence of randomized strategy equilibria where firm

i’s cost of leading is εn
i and firm i chooses the first stage with probability qn

i . If limn→∞ εn
i = 0,

then limn→∞ qn
j = 1. If limn→∞ εn

i = ε̄i, then limn→∞ qn
j = 0.

Proof. See Appendix.

Under this general setting, the uniqueness of the randomized strategy equilibrium is not

guaranteed. However, any randomized strategy equilibria converge to the Bertrand equilib-

rium as the cost of leading approaches zero. Thus, our main result still holds under strategic

complements.
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4 Concluding Remarks

In their pioneering work on endogenous timing, Hamilton and Slutsky (1990) showed that three

pure strategy equilibria exist: one simultaneous-move equilibrium (Cournot or Bertrand) and

two sequential-move equilibria (Stackelberg). Many works pointed out that the Cournot or

Bertrand equilibrium is not robust since it does not constitute a pure strategy equilibrium if a

small gain from waiting (such as avoiding inventory costs or additional informational gain) is

introduced. On the contrary, empirical works using laboratory experiments showed that in the

quantity competition, Cournot behavior often appears while Stackelberg behavior is rarely seen.

We bridge the gap between the two contrasting results by investigating randomized strategy

equilibrium. We find that there exists a randomized strategy equilibrium and it converges to

the Cournot or the Bertrand equilibrium as the gain from waiting approaches zero. Thus, we

show that the pure strategy simultaneous-move equilibrium in the action commitment game is

a degenerate randomized strategy equilibrium.

If we restrict our attention to pure strategy equilibria, we get that the set of equilibrium

outcomes is not lower hemi-continuous with respect to the gain from waiting, and that the

Cournot or Bertrand outcome is an equilibrium only when the gain from waiting is exactly zero.

However, if we extend our attention to randomized strategy equilibria, the set of equilibria is

continuous. The equilibrium outcome and equilibrium welfare which are very close to those of

the Cournot or the Bertrand equilibrium appear in the randomized strategy equilibrium when

the gain from waiting is sufficiently small. Thus, the Cournot or the Bertrand equilibrium may

be as robust as the other two Stackelberg equilibria; this result is consistent with the results of

Huck et al. (2002) and Fonseca et al. (2005).

Although we show the result under fairly general conditions in strategic complement cases,

we failed to show it under general conditions in strategic substitute cases. This remains for

future research.
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Appendix

Proof of Proposition 1(i) Suppose that firm i chooses to produce in the second stage. At

the beginning of the second stage, firm i observes whether or not firm j has produced in the

first stage. When firm j chooses to produce in the first stage, firm i chooses yi = Ri(yj) =

(a − c − yj)/2. When firm j chooses to produce in the second stage, both firms face Cournot

competition. As a result, firms choose y1 = y2 = (a − c)/3.

Suppose that firm i chooses to produce in the first stage. Let superscript ‘1’ implies the first

period production. For example, y1
i is the output of firm i when it chooses to produce in the

first stage. Let qj be the probability that firm j chooses to produce in the first stage. Firm i

chooses y1
i so as to maximize qj(a − y1

i − y1
j − c)y1

i + (1 − qj)(a − y1
i − Rj(y1

i ) − c)y1
i − ε. The

first-order condition is

qj(a − c − y1
j − 2y1

i ) + (1 − qj)((a − c)/2 − y1
i ) = 0. (5)

The best reply of firm i when it chooses to produce in the first stage is

y1
i =

1
1 + qj

[
(1 + qj)(a − c)

2
− qjy

1
j

]
. (6)

In the randomized strategy equilibrium, the expected payoff of firm i when it chooses to

produce in the first stage must be equal to its expected payoff when it chooses to produce in

and the second stage. Thus,

qj(a − y1
i − y1

j − c)y1
i + (1 − qj)(a − y1

i − Rj(y1
i ) − c)y1

i − ε

= qj(a − y1
j − Ri(y1

j ) − c)Ri(y1
j ) + (1 − qj)(a − yC

i − yC
j − c)yC

i .
(7)

Substituting i = 1, j = 2 and i = 2, j = 1 into (6) and (7), we have four equations. Solving

these four equations with respect to y1
1, y

1
2 , q1, and q2, we have the equilibrium outcome. From

the two equations in (6), we have

y1
i =

1 + qi

2(1 + qi + qj)
(a − c) (i, j = 1, 2, i �= j). (8)

Substituting (8) into (7), we have

(1 − q2)(2 + 4q1 − 5q2 + 4q1q2 + 2q2
1 − 7q2

2)(a − c)2

144(1 + q1 + q2)2
= ε. (9)
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(1 − q1)(2 + 4q2 − 5q1 + 4q2q1 + 2q2
2 − 7q2

1)(a − c)2

144(1 + q2 + q1)2
= ε. (10)

Subtracting (10) from (9), we obtain

(q1 − q2)(11 + 4q1 + 4q2 − 5q1q2 − 7q2
1 − 7q2

2)(a − c)2

144(1 + q1 + q2)2
= 0. (11)

We can show that 11 + 4q1 + 4q2 − 5q1q2 − 7q2
1 − 7q2

2 = 0 if and only if q1 = q2 = 1. Thus, at the

randomized strategy equilibrium, q1 = q2 must hold.

Substituting q1 = q2 = q into (9), we have

(1 − q)(2 − q − q2)(a − c)2

144(1 + 2q)2
=

(1 − q)2(2 + q)(a − c)2

144(1 + 2q)2
= ε. (12)

Let

h(q) :=
(1 − q)2(2 + q)(a − c)2

144(1 + 2q)2
.

We have

h(0) =
(a − c)2

72
> 0, h(1) = 0, and

dh(q)
dq

= −(1 − q)(11 + 5q + 2q2)(a − c)2

144(1 + 2q)3
< 0 ∀q ∈ [0, 1).

Thus, (12) has a unique solution qE ∈ (0, 1) for all ε ∈ (0, (a − c)2/72)—a randomized strategy

equilibrium.

Proof of Proposition 1(ii) By the implicit function theorem,

dqE(ε)
dε

=
1

dh(q)
dq

< 0

holds for all q ∈ [0, 1). Thus qE(ε) is decreasing in ε.

qE(ε) is the solution of h(q) = ε. Since h(1) = 0, we have qE(0) = 1. Since h(0) = (a−c)2/72,

we have qE((a − c)2/72) = 0. We can show that qE(ε) is continuous for all ε ∈ [0, (a − c)2/72),

so qE(ε) → 1 as ε → 0 and qE(ε) → 0 as ε → (a − c)2/72.

Proof of Proposition 2(i) Suppose that firm i chooses to name its price in the second stage.

At the beginning of the second stage, firm i observes whether or not firm j named its price in the

first stage. When firm j chooses to name its price in the first stage, firm i chooses pi = Ri(pj).
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When firm j chooses to name its price in the second stage, firms face Bertrand competition. As

a result, firms choose (pi, pj) = (pB
i , pB

j ) in equilibrium.

Suppose that firm i chooses to name its price in the first stage. Let p1
i be the price of firm i

when it chooses to name its price in the first stage. Further, let p2
j be the price of firm j when

firm i chooses p1
i in the first stage. Let qj be the probability that firm j chooses to name its price

in the first stage. Firm i chooses p1
i so as to maximize qjVi(p1

i , p
1
j ) + (1 − qj)Vi(p1

i , Rj(p1
i )) − εi.

The first-order condition is

∂
[
qjVi(p1

i , p
1
j) + (1 − qj)Vi(p1

i , Rj(p1
i ))

]
∂p1

i

=qj

∂Vi(p1
i , p

1
j)

∂p1
i

+ (1 − qj)

[
∂Vi(p1

i , p
2
j )

∂p1
i

+
∂Vi(p1

i , p
2
j )

∂p2
j

· dRj(p1
i )

dp1
i

]
= 0.

(13)

In the randomized strategy equilibrium, the expected payoff of firm i when it chooses to

name its price in the first stage must be equal to its expected payoff when it chooses to name

its price in the second stage. Thus,

qjVi(p1
i , p

1
j ) + (1 − qj)Vi(p1

i , Rj(p1
i )) − εi = qjVi(Ri(p1

j ), p
1
j ) + (1 − qj)Vi(pB

i , pB
i ). (14)

Substituting i = 1, j = 2 and i = 2, j = 1 into (13) and (14), we have four equations. Solving

these four equations with respect to p1
1, p

1
2, q1, and q2, we have the equilibrium outcome.

Since we assume |∂2Vi(pi, pj)/∂2pi| > |∂2Vi(pi, pj)/∂pi∂pj|, we can apply the implicit func-

tion theorem to the two equations in (13). From the two equations in (13), we have the solution

p1
i (qi, qj), p1

j(qi, qj), which is continuously differentiable for all qi, qj ∈ [0, 1].

Substituting p1
i (qi, qj), p1

j (qi, qj) into (14), we have

qj[Vi(p1
i (qi, qj), p1

j (qi, qj)) − Vi(Ri(p1
j(qi, qj)), p1

j (qi, qj))]

+(1 − qj)[Vi(p1
i (qi, qj), Rj(p1

i (qi, qj))) − Vi(pB
i , pB

i )] = εi.
(15)

Note that if qj = 0, then p1
i (qi, qj) = pL

i and the left-hand side of (15) equals ε̄i. Note also

that if qj = 1, then p1
i (qi, qj) = Ri(p1

j ) and the left-hand side of (15) equals zero. Hence, the left-

hand side of (15) is greater (smaller) than the right-hand side of (15) when qj = 0 (1). Thus, we
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can apply the fixed point theorem shown in Garcia and Zangwill (1979). Under these conditions,

for any εi, εj there exists (q∗i , q
∗
j ) that comprises a randomized strategy equilibrium.

Proof of Proposition 2(ii). First, we prove that limn→∞ qn
j = 1 if limn→∞ εn

i = 0. We

prove it by contradiction. Suppose not. Then there exists a sequence of randomized strategy

equilibrium such that {εn
i }∞n=1 converges to 0 and {qn

j }∞n=1 does not converge to 1.

Let q0
j be lim infn→∞ qn

j . Since qn
j ≤ 1, q0

j < 1. Since p1
i (qi, qj) = pL

i when qj = 0, q0
j > 0

holds from (15).

Let {qk
j }∞k=1 be a subsequence of {qn

j }∞n=1 which converges to q0
j . Note that {εk

i }∞k=1 converges

to 0.

By the continuity of p1
i , p

1
j , Rj , and Vi,

lim
k→∞

[qk
j (Vi(p1

i (q
k
i , qk

j ), p1
j (q

k
i , qk

j )) − Vi(Ri(p1
j(q

k
i , qk

j )), p1
j (q

k
i , qk

j )))

+ (1 − qk
j )(Vi(p1

i (q
k
i , qk

j ), Rj(p1
i (q

k
i , qk

j ))) − Vi(pB
i , pB

j ))]

=q0
j (Vi(p1

i (q
0
i , q

0
j ), p

1
j (q

0
i , q

0
j )) − Vi(Ri(p1

j (q
0
i , q

0
j )), p

1
j (q

0
i , q

0
j )))

+ (1 − q0
j )(Vi(p1

i (q
0
i , q

0
j ), Rj(p1

i (q
0
i , q

0
j ))) − Vi(pB

i , pB
j ))

= lim
k→∞

εk
i = 0

(16)

holds from (15). Thus, q0
j ∈ (0, 1) and ε0

i = 0 comprise the randomized strategy equilibrium.

On the other hand, for any qj ∈ (0, 1) p1
i (qi, qj) must be in (pB

i , pL
i ).4 Consider firm i’s

payoff when i chooses p1
i = Ri(p1

j (q
0
i , q

0
j )) in the first period:

q0
j Vi

(
Ri(p1

j(q
0
i , q

0
j )), p

1
j (q

0
i , q

0
j )

)
+ (1 − q0

j )Vi

(
Ri(p1

j (q
0
i , q

0
j )),Rj(Ri(p1

j (q
0
i , q

0
j )))

)
. (17)

Since pB
i < p1

i (q
0
i , q

0
j ) and Rj is upward slopping, pB

j < Rj(p1
i (q

0
i , q

0
j )). Because pF

j = Rj(pL
i ) and

p1
i (q

0
i , q

0
j ) < pL

i , Rj(p1
i (q

0
i , q

0
j )) < pF

j . By the assumption of pF
i < pL

i , we have Rj(p1
i (q

0
i , q

0
j )) < pL

j .

Since Vi(pi, Rj(pi)) is strictly concave, Vi(pi, Rj(pi)) increases in pi for pi ∈ (pB
i , pL

i ). Be-

cause we have shown that Rj(p1
i (q

0
i , q

0
j )) ∈ (pB

i , pL
i ), Vi(Ri(p1

j (q
0
i , q

0
j )),Rj(Ri(p1

j (q
0
i , q

0
j )))) >

Vi(pB
i , Rj(pB

i )) = Vi(pB
i , pB

j ). Thus, (17) is strictly larger than Vi(p1
i (q

0
i , q

0
j ), Rj(p1

i (q
0
i , q

0
j ))) −

4 This was suggested in Hamilton and Slutsky (1990), and was shown in Pastine and Pastine (2004).
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Vi(pB
i , pB

j ). Since firm i’s price when it names its price in the first stage is p1
i (qi, qj), (17) is equal

to or smaller than Vi(p1
i (q

0
i , q

0
j ), p

1
j (q

0
i , q

0
j )) − Vi(Ri(p1

j(q
0
i , q

0
j )), p

1
j (q

0
i , q

0
j )). Thus, the equality in

(16) does not hold—a contradiction.

Next, we prove that limn→∞ qn
j = 0 if limn→∞ εn

i = ε̄i. The first term in (15) is non-positive

and the second term in (15) is at largest (1 − qj)ε̄i. Thus qj must be close to zero when εi is

close to ε̄i.
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