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Abstract

It iswell-known in the statisticd literature that when sample sizeis large, any small departure
from the “true” model would yield significant test statistics. Thisisaue is further compounded by
the faa that reseachers often facethe problem of analyzing groups of unequal sizesand as a
result our ability to detea group dfferences may be hampered. Even though this topic has not
been investigated systematicdly, reseachers conducting statisticd analysis in multi-way
crossclassficaion tables often adopt various ad hoc standardization procedures to addressthis
particular problem by inflating and deflating group sizesto comparable values. Using Monte
Carlo smulations, this gudy offers an empiricd investigation on the dfed of (a) varying sizes
aaossgroups, (b) differences in the strength of association between groups, and (c) the ordering
of (a) and (b) on our ability to deted differences in asociation between groups and whether the
standardization procedure offers a viable solution. The findings confirm that while it is true that
differencesin group size and strength of asciation affed the likelihood-ratio test statistics
significantly when the spedfied models are incorred, their influence on the “true” model and its
over-parameterized counterparts is negligible. In other words, unlike statistica models such as
those in covariance structure analysis, the goodnessof-fit statistics in log-linea models are
independent of sample sizewhen the models edfied are “true.” On the other hand, two
common problems are asociated with the standardization procedure: the problem of
underdispersion and the possbili ty of committing type Il error in some occasions. Asaresult,
standardization does not appea to be aviable strategy and reseachers sould instead rely on
conventional nested chi-squared tests for deteding group dfferences. Finally, the study provides

strategies to examine whether the preferred models indeed are the proper ones.



Introduction

Most empirical investigations by social science researchers naturally involve comparisons of
different social groups (such as gender, racial/ethnic groups, countries, organizations, and
industries) or temporal trend (such as birth cohorts, time series data, and longitudinal data). They
include the study of racial and ethnic differences in the relationship between education and
occupation, country-specific variation in occupational mobility, and temporal changesin the
relationship between education and religiosity, political identification, or attitudes toward
abortion. Furthermore, it is not unusual that the sizes of these groups are unequal, due either to
population distribution or sampling design. In multiway contingency table analysis, it is generally
believed that varying group sizes, especially when the discrepancy is large, may play a pivotal role
in influencing our ability to detect group differences or temporal trend. Such belief is further
reinforced by the well-known fact in statistical literature that when the sample size is large, any
small departure from the “true” model would yield significant test statistics and therefore
researchers run considerable risks of identifying trivial differences when in reality these group
differences are negligible.* As noted by Gelman and Rubin (1995), ‘it is possible to have so much
data that atest will rgject every parsimonious model that is proposed” (p. 166).

To date, there is little methodological investigation into this particular subject matter (see
Fitzmaurice and Goldthorpe 1997; Fitmaurize, Heath, and Cox 1997; and Wong 1994 for some
exceptions). Meanwhile, several 1-df tests and other complex statistical models have been

developed for cross-classification analysis that partially address this particular problem (Goodman

The calculation of the likelihood-ratio chi-squared statistic (L2) is the following:
L2=-2logA =2 Y ) n;log (n;my)
where A isthe Wilk statistic, n; and fy; are observed and expected frequencies under a particular
model (Agresti 1990)..



and Hout 1998, 2001; Wong 1990, 1995, 2001; Xie 1992; and Y amaguchi 1987). While these
statistical models are parsimonious and powerful to detect group differences and therefore offer
important tools to empirical researchers, they do not directly address the concern regarding the
influence of unequal group size on our ability to detect group differences.

Another strategy to counteract the influence of large and unequal group sizesisto use model
selection criteria. The most popular one is the BIC (Bayesian Information Criterion) statistic,
derived from the Bayesian posteriori test theory (Raftery 1996; but note the critique by Weakliem
1999). Alternatively, other researchers adopt various ad hoc standardization procedures to
address the problem. They include weighing and standardizing individual tables by (a) using the
smallest group as the reference; (b) standardizing them by an arbitrary size (say, 1000), with
inflated sizes for some and deflated for others; or (c) rescaling the contribution of individual
groups to the likelihood-ratio test statistics by using a standardized index.? In some occasions,
researchers combine these two strategies together (that is, adopting both standardization and the
BIC statistic). Of course, there are also works that make no correction and assume that varying
group sizes have no impact whatsoever in the detection of differences across tables (for instance,
Goodman and Hout 2001; Wong 2001).

Given the multitudes of strategies available, empirical researchers may be confused what
congtitutes the best strategy. With little systematic and empirical investigation of the behavior of
these strategies in redlistic conditions, researchers and critics often wonder if the adoption of a

different strategy may lead to dramatically different conclusions. Furthermore, empirical

?In particular, Erikson and Goldthorpe (1993) adopt the following correction in each group:
L%(S=((L?-df )/N)*K+df where L? is the likelihood-ratio test statistic for aparticular group, K isthe
standardized size, N isthe size of the group, and df is the degree of freedom.



researchers would also want to understand the properties of these strategies under various
conditions and under what circumstances would one prefer a particular strategy over another.

Generally speaking, we need to consider the following factors in the investigation: (a) the
degree of variation in group sizes; (b) the degree of variation in the strength of association across
groups, (c) the ordering of (a) and (b); and (d) the number of groups involved in comparison.
Owing to the design complexity, the present investigation will consider only two groups and
examine only whether the detection of group differences should be based on standardized or
unstandardized counts. However, the findings (detailed below) should have broader
generalization to analyses with more than two groups and other standardization procedures. In
sum, the present study uses Monte Carlo simulations to study the extent to which differencesin
group size, strength of association and their ordering affect our ability to detect differences and
whether statistical analysis should be based on standardized or unstandardized counts.

The present study is partly motivated by the works of Fitzmaurice and Goldthorpe (1997),
Fitmaurize, Heath, and Cox (1997), and Wong (1994). However, it differs from themin the
following ways. Wong (1994) only considered a limited set of conditions in the Monte Carlo
simulations and the major goals of this particular work isto compare how various model selection
criteria (AIC, BIC, nested chi-square tests, and L?/df ratio) affect our ability to detect group
differences. It does not consider the full range of conditions as in this work nor does it consider
how the practice of standardization affects the outcome.® The study differs from Fitzmaurice and

Goldthorpe (1997) and Fitzmaurice, Heath, and Cox (1997), where their major concern is how

*Thereisonly aclose approximation (but not exact relationship) between the simulated
data and the estimated models. There is also overdispersion in some of the test statistics (Wong
1994). Both problems are corrected in the present study.
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the problem of overdispersion significantly influence our ability to detect group differences.* As
their works illustrate convincingly, the problem of overdispersion is common in most survey
samples, arising from a variety of conditions, design effects (particularly when there is a mix of
different sampling schemes), hidden clusters, interviewer effects, and omission of relevant
predictors. Animportant consequence of overdispersion isthat it typically favors models that are
too complex or rejects any model that is approximately “true,” including situations where there is
no difference between groups. In sum, the sampling issue and the problem of overdispersionisa
persistent and critical subject in empirical research. However, the overdispersion problem will not
be directly addressed in the simulation design. It will be included in the discussion section on how
to combine findings from Monte Carlo simulations with corrections for overdispersion to examine
group differences in association.
Monte Carlo Smulations

Consider the following simple heterogeneous log-multiplicative row and column effects (RC)
model (Goodman 1979) for athree-way table with row (R), column (C), and layer (L) variables,
with the layer variable representing the grouping variable. The expected frequency for a
particular cell, (i, j, K) can be written as the following:

log My = U+ U + U + U+ Uy + Uy + G [y v, (1)

where my, is the expected frequency under the model; u is the overall parameter, u;, u;, U, Uy, and
u; are al one-way or two-way marginal parameters, subject to conventional normalization, ¢, is

the intrinsic association parameter, and |, and v; are the estimated row and column scores,

“Overdispersion occurs when the data display more variability than is predicted by the
variance-mean relationship for the assumed sampling model.
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respectively, subject to the following constraints: ) p; =), v,=0and ) p?=) v?=1. For the
sake of simplicity, the simulation study is based on the 4 x 5 x 2 table and the row and column
scores are fixed to have the following values: -0.668, -0.198, 0.169, and 0.697 for row scores and
-0.610, -0.330, -0.029, 0.329, and 0.640 for column scores. In other words, only ¢, are allowed
to vary across groups according to the conditions specified below. Depending on the
specification of smulated conditions, atotal of 50,000 observations are generated for each group
and served as the population.”> Observations are then randomly drawn from each group using the
sampling with replacement technique.
Table 1 About Here

By limiting the number of groupsto two, we only need to consider three factors in the Monte
Carlo smulations: (a) varying size across groups, (b) varying strength of association across
groups, and (c) the ordering of variation of (a) and (b). Four different scenarios will be
considered for the first two factors: huge, large, moderate, and no difference. To avoid
complications arising from sparse cells, the smallest size for any table is 1000. Similarly, the
smallest intrinsic association parameter in any group is set to 1. The exact specifications are
detailed as the following:
(A) Degree of variation in group size: (a) huge difference (the ratio is 12); (b) large difference

(theratio is 6); (c) smal difference (the ratio is 2); and (d) no difference (theratio is 1);

*The master datasets are generated by using the OFFSET command in the statistical
software, GLIM (Francis, Green, and Payne 1993).
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(B) Degree of variation in the strength of intrinsic association (¢) parameter: (a) huge difference
(theratio is 4); (b) large difference (the ratio is 2); (c) small difference (theratio is 1.5); and (d)
no difference (theratio is 1); and

(C) Ordering of variationin (A) & (B): whether the group with larger size also has greater value
in the intrinsic association parameter (¢) than the other group and vice versa.

The combination of (A), (B), and (C) yields atotal of 25 unique conditions (see Table 1) asthe
ordering makes no difference for entriesin the last row or column (that is, no difference in the
strength of association or group size). A tota of 100 replicates are then randomly drawn for each
condition. In other words, the simulation exercise studies atotal of 2,500 three-way tables. The
following models are then applied to the tables to test for group differences. They include: (1)
conditional independence model (ClI), (b) full two-way interaction model (FI), (c) log-linear layer
effects model (LL,), (d) log-multiplicative layer effects model (LL,), (€) homogeneous uniform
association model (UA,), (f) heterogeneous uniform association model (UA.), (g)
homogeneous log-multiplicative row and column effects model (RC,), (h) heterogeneous
log-multiplicative row and column effects model (RC,), (i) simple heterogeneous
log-multiplicative row and column effects model (RC,), (j) homogeneous topological model
(TOP,), (k) heterogeneous topological model (TOP,), and (I) topological model with

log-multiplicative layer effect (TOP,).° In particular, RC, would be the true model if there is no

*The topological model has the following design:
22233
22234
33311
33441
See Hauser (1978) for details about the utility of topologica modelsin mobility andysis.



difference in strength of association and RC,; would be the true one when differences occur
whereasLL,, LL,, and RC, can aso be regarded as the true but over-parameterized models when
differences occur. Finaly, the topological models gauge the effect of misspecified models as we
usually would not know which one is the true model. The goodness-of-fit statistics will be
calculated based on either unstandardized or standardized counts. In the latter case, both groups
will be standardized to have 1000 observations.
Results
(a) Effects of Group Sze When Difference in Intrinsic Association is Huge

Tables 2-5 report the results of various statistical models to examine the effect of differential
group size (huge, large, small, and no difference) when the difference in intrinsic association is
huge (that is, ¢ ratio of 4). Judging from the likelihood-ratio test statistics for the conditional
independence (Cl) and full two-way interaction (FI) models, the results confirm that the effect of
sample size can be large for poorly specified or misspecified models. The problem is particularly
acute when group size and the strength of association are both huge relative to the other group.
For instance, the likelihood-ratio test statistic for Cl in condition HH2R is about 4 times larger
than HH1R (2796 versus 693). Asthe discrepancy between the size of the two groups narrows,
theratio of difference in the likelihood-ratio test statistics also narrows, to less than 3 times when
the discrepancy in group sizeis large and only about 1.6 times when the discrepancy is small (see
Tables 2, 3, and 4). On the other hand, when groups are standardized to have the same size, the
impact of differential group size isunder control. The likelihood-ratio test statistics in HH1R,
HH2R, LH1R, LH2R, SH1R, and SH2R all display similar values; the range is between 277 and

284. Similar observation can be found for the full two-way interaction model (FI). Thus, when



models are misspecified, the standardization procedure eliminates the influence of differential
group size. Thismakes intuitive sense as it is why the procedure is proposed in the first place.
Tables 2-5 About Here

Relative to the full two-way interaction model, the two layer effects model (LL, and LL,) both
offer acceptable results when using unstandardized counts. Contrary to expectation, the effect of
unequal group size is extremely weak (L?=10 to 14 with 11 df). In the case of the “approximately
true” model, the goodness-of-fit statistics for the heterogeneous uniform association (UA ,) model
are acceptable at the conventional 0.05 significance level as long as the strength of intrinsic
association and differential group size are not concurrently larger than the other group. The L2
vaues are 28, 26, and 25 for HH1R, LH1R, SH1R, and NH1R, respectively, with 22 df.
However, when the strength of intrinsic association and group size within one group are both
larger than the other, the likelihood-ratio test statistics are not acceptable when differential group
size is either huge (HH2R) or large (LH2R) (56 and 39 points, respectively) but are acceptable in
other conditions. While the impact of differential group size is evident here, itsimpact is much
weaker than expected. The range of the test statistics for UA, is ill quite large (more than 31
chi-squared points apart). The range narrows considerably when standardized counts are used
and they are acceptable by conventional level of significance. The same, however, cannot be said
to the two over-parameterized models (LL, and LL,), where the problem of underdispersion is
evident. That is, the test statistics of the specified models are smaller than their associated
degrees of freedom.

When we examine the performance of the true model (the simple heterogeneous RC model,

RC,) and its overparameterized counterpart (heterogeneous RC model, RC,), we observe that



disregarding whether there is any discrepancy in group sizes, the goodness-of-fit statistics for
unstandardized counts do not vary across conditions and the L?/df ratios are very closeto 1. This
validates our statistical understanding of log-linear modeling that the test statistics and degrees of
freedom have the same value when the model is true, afact that has been widely ignored by
empirical researchers who are more concerned with how sample size may affect our ability to
detect group differences when there are minor departures from the true model. Again, while the
performance of the same models is acceptable when using standardized counts, the problem of
underdispersion is self-evident.

Under normal circumstances, researchers would not be able to know a priori what the true
model is and therefore almost al models estimated are misspecified (in varying degree, of course).
Thisis the reason why we include severa topological models (lines 10, 11, 12) in the simulation
study. We experiment severa different matrices for the topological design through trial-and-error
and the one presented here yields the best result. The design matrix does not have the same
monotonic relationship between row and column variables as specified in the simulated condition.
As expected, the performance of the design matrix is rather poor when the discrepancy in group
sizeislarge, especialy in HH2R. In general, the results are consistent with the discussion earlier
regarding misspecified models: that the standardization procedure is effective in controlling for
the impact of differential group size for misspecified models. The test statistics for TOP,, TOP,,
and TOP; are similar in all four tables under standardization. 1n the case of TOP;, they are even
acceptable at the conventional significance level, though their L%/df ratios are substantially greater

than 1 (between 1.3 to 1.6).
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In sum, the above results strongly indicate that our ability to detect group differencesin
association is not hampered by varying group sizes, particularly when the true model is also
specified. Also, whether the calculation is based on standardized or unstandardized counts, the
contrasts between models postulating no group difference and group difference are aways large
and statitically significant. The risk of committing Type | error is extremely small. The
standardization procedure is successful in controlling the impact of differential group size on the
goodness-of-fit statistics when the models are misspecified. At the same time, the standardization
procedure overcorrects the “true” and over-parameterized models, resulting in underdispersion.
(b) Effects of Group Sze When Differencein Intrinsic Association is Large

Tables 6-9 report the results of various statistical models to examine the effect of differential
group size (huge, large, small, and no difference) when the difference in intrinsic association is
large (that is, ¢ ratio of 2). Similar to the case earlier, the impact of differential group sizeis
most noticeable when the difference is huge (aratio of 12). As expected, the degree of inflated
goodness-of-fit statistics is substantially smaller for all misspecified models. For modelsthat are
‘true” and their over-parameterized counterparts (that is, LL ,, LL,, RC,, and RC,), differential
group size again does not affect the test statistics in any meaningful way, the L#/df ratios are very
closeto 1.

Tables 6-9 About Here

When we examine the test statistics under standardization, we again observe that the
procedure is able to control for the effect of differential group size on the goodness-of-fit
statistics when the models are misspecified, with highly comparable test statistics (L2) across the

four tables. The larger the degree of model misspecification, the larger the test statistics. On the
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other hand, the problem of underdispersion persists for the true model and their
over-parameterized counterparts. Despite the problem of underdispersion, it should be noted that
accurate conclusions about group differences in the association between row and column variables
nonetheless can still be reached when comparisons are based on nested chi-squared tests. At the
same time, the model postulating full two-way interaction (FI) with no group differences are
acceptable under standardization even when there is a huge difference in the size of two groups.
The range of the standardized test statistics (L?) is between 16 and 21 with 12 df, with a
substantial proportion of replicates (over 60 percent in most cases) acceptable at the 0.05 level of
significance. This strongly cautions against the use of standardized countsin data analysis. In
contrast, the portion is smaller when unstandardized counts are used (less than 10 percent in
HL2R and LL2R but over 20 percent inHL1R, LL1R, SL1R, SL2R, and NL1R).
(c) Effects of Group Sze When Difference in Intrinsic Association is Small

Tables 10-13 report the results of various statistical models to examine the effect of
differential group size (huge, large, small, and no difference) when the difference in intrinsic
association is small (that is, ¢ ratio of 1.5). The problem of underdispersion under
standardization is most obvious in this particular case. Worse still, many models (FI, UA,, RC,,
and TOP,) that postulate no group difference even achieve acceptable goodness-of-fit statistics
(L?) and the LZ/df ratios are close to or smaller than 1 in some occasions. |f researchers based on
their analyses solely on standardized counts, they would have concluded that there are no group
differences in association and therefore running the risk of committing type 11 error (that is,
incorrectly accepting awrong model or not rejecting a false hypothesis). Furthermore, one

cannot rely on the nested chi-squared tests to gauge evidence of group differences in association.



12

Clearly, standardization is not the preferred strategy when group differences in association are
small. The procedure overcorrects and becomes problematic when the statistical power of the
tests are relatively low.
Tables 10-13 About Here

On the other hand, the problem is much less obvious when unstandardized counts are used.
Whileit istrue that the goodness-of-fit of some misspecified models (that is, models that
postulate no group differences in association) are acceptable at the conventional level (for
example, as high as 84 percent for the full two-way interaction model in LS1R), all of them have
the L?/df ratios substantially greater than 1. Not surprisingly, for the ‘true” model (RC ,) and its
over-parameterized counterparts (LL,, LL,, and RC,), the ratio of L? relative to its df continuesto
be very closeto 1. On average, the nested chi-squared tests appear to work moderately well.
(d) Effects of Group Sze When Difference in Intrinsic Association is None

Tables 14-17 report the results of various statistical models to examine the effect of differential
group size (huge, large, small, and no difference) when there is no difference in intrinsic
association (that is, ¢ ratio of 1). Again, the problem of underdispersion is evident when
adjustments are made to make the two groups comparable. Fortunately, unlike the previous case,
decisions about group differences do not seem to hamper our decision about group differences.
With the exception of the conditional independence mode!, the L% df ratios for al other models are
substantially less than 1.

Tables 14-17 About Here
The pattern is rather similar when raw counts are used. With the exception of the conditional

independence (Cl) and the two uniform association models (UA; and UA,), the L%(df ratios for all



13

other models are very closeto 1. Correct decisions about no group differences can be obtained
from the nested chi-sguared tests as none of them are statistically significant at the 0.05 level. In
sum, the findings here indicate that when there is no group difference in association, the
performance of models based on standardized counts are just as adequate as those based on raw
counts. Analysis based on raw counts are thus preferred because there is no problem of
underdispersion, created artificially by the weighting procedure itself.
Using Nested Chi-Squared Tests to Detect Group Differences

The above findings cast doubts against the use of any weighting procedure to correct for
differential group size in log-linear modeling. At the same time, they also point to the utility of
nested chi-squared tests to detect group differences (Weakliem 1999). To illustrate further the
performance of the nested chi-squared tests to study group differences, Table 18 summarizes the
contrasts between several homogeneous and heterogeneous models. A total of seven nested tests
are conducted to check the number of times one can reject the model of no group differencein
association, using the 0.05 level of statistical significance as the cutoff. They include tests
between Fl and LL, (A,); Fl and LL, (A,); UA, and UA, (A,); RC, and RC, (A,); RC, and RC,
(Ay); TOP, and TOP, (A¢); and TOP, and TOP; (A,) for both unstandardized and standardized
counts. Each entry represents the number of times that the null hypothesis of no group difference
can be rejected.

Table 18 About Here

When the underlying difference in association is huge between groups, the nested chi-sguare

difference tests are able to reject the null hypothesis without difficulty, disregarding whether the

specified models conform to the underlying true model (lines 1 through 7). The probability of
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rejecting the null hypothesisis identical for both raw and standardized counts. However, asthe
difference in association between groups declines, not al tests perform equally well. As expected,
the contrasts between RC, and RC; (A.) provides the best result and is therefore used as the
benchmark for comparison. When the difference in ¢ ratio is large, we can reject more than 96
out of 100 timesin A whenever the two groups are of different sizes, no matter how small that
discrepancy is. The performance deteriorates dightly to only 89 percent when the two groups
have equal size. The performance of other contrasts is highly comparable to A, particularly those
involving 1-df tests. Contrasts based on standardized counts also yield comparable results but
they are clearly somewhat inferior than their unstandardized counterparts.

The undesirability of using standardized counts is most obvious when the difference in
association between groupsis small. By comparing the values for A, and A, the performance of
the former clearly outpaced that of the latter, especialy in the case for HS2R, LS2R, and SS2R,
that is, when the size and strength of association of one group are both higher than the other. In
these cases, the number of times that one can reject the null hypothesis can be three times larger
when using raw counts as opposed to standardized counts. The standardization procedure clearly
overcorrects and as a result the risk of committing type Il error increases. Admittedly, the
performance of these nested tests are not high (between 43 and 75 percent) even when raw counts
are used in the analysis. Nonetheless, their performance is far more superior than any other
aternatives.

The only condition that standardized counts provide better results is when there is no
difference in association across groups. Entriesin the last four rows consistently show that using

standardized counts yield the lowest number of times that one would reject the “true’ null
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hypothesis of no difference in association. The performance of nested tests based on raw counts
is highly comparable and the risks of committing type | error for most contrasts are acceptable. In
sum, the above results clearly shows that the standardization procedure is a conservative strategy
and has a biased tendency against group differences in association. Since the performance of
nested tests based on raw counts perform consistently well in all scenarios, there is no need to
make adjustment for differential group size and one should continue to rely on the conventional
nested chi-squared teststo test for differences.
Suggestions for Modeling Strategies

The Monte Carlo experiment provides the following important findings that can be used to
inform modeling strategies. First, there is no impact of sample size (differential group size, in
particular) on our ability to detect group differences when the specified model istrue. Second,
there is no impact in the differential strength of association on our ability to detect group
differences when the specified model istrue. In both cases, the value of the goodness-of-fit
statistic relative to its associated degrees of freedom is aways closeto 1. Third, only when
models that depart severely from the true model would one find the influence of sample size and
strength of association on the goodness-of-fit statistics. 1n other words, unlike statistical models
in covariance structure analysis, the calculation of goodness-of-fit statistics in independent of
sample size and strength of association, afact that has been consistently ignored by applied
researchers who tend to focus on misspecified models instead. An important corollary of this
finding is that using the proportion reduction in L? or commonly known as the normed fit index
(NFI) in covariance structure analysis to justify a particular non-fitting model is problematic,

especialy when the conditional independence model, often expected to be incorrect in the first
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place is chosen as the baseline model. In other words, a 96 or 98 proportion reduction in
goodnessof-fit statistics does not guaranteethe model under consideration is indeed a good one.
Fourth, the performance of over-parameterized models rivals that of the true model and therefore
can be used as competing models during the modeling stage.

In statisticd modeling, scientific acaracy and scientific parsimony are both important and they
are not necessarily tradeoffs. For most praditioners, the major reason why they opt for
corredion or adopt other ad hoc strategies is becaise none of the models fit the datawell. The
Monte Carlo experiment clea'ly demonstrate that the reason why they do not fit well isnot due to
their huge size or underlying asociation, but rather becaise the models are “misgpedfied.” The
reasons for misgedficaion are many but the most obvious one, of courseg, is that the models are
too smple to handle the cmmplex association pattern governing the data. 1n other words, we
should work harder to seach for more cmplex modelsinstead. A number of them are dready
widely available in the literature and the list below does not meant to be exhaustive. The only
caved isthat the dhoice of these dternative models sould not be based on methodologica
prowess but theoreticd import and substantive interpretation. In addition to the models
discussed ealier, other complex models include: (a) hybrid models that combine verticd and non-
verticd effeds (Stier and Grusky 1990 Wong 19932; (b) Goodman's U+RC, R+RC, C+RC
model (Goodman 1986); (d) Goodman’'s multidimensional association models for groups, RC(M)-
G models (Bedker 1989 Bedker and Clogg 1989; (d) log-trilinea multidimensional scaded
asociation models that use ather the PARAFAC/CANDECOMP or 3-mode decmposition

method (Wong 2002); and (e) the modified regresson-type models (Goodman and Hout 1998
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2001). All of them have been successfully applied to tables that yield new and interesting
understanding of the underlying association between tables.

Two modeling strategies can be adopted. The first one uses bootstrapping and resampling
techniques and the second one use arbitrary scaling and rescaling methods. In the case of
bootstrapping or resampling, the following steps can be taken: (@) divide the tables into two or
multiple tables randomly: If the sample size is small, use sampling with replacement to generate
multiple samples; (b) estimate a wide variety of models and use either L? or L%/df as the criterion
for choosing models to a particular sample; (c) apply the same set of models to other generated
samples: if the same preferred models fit consistently well, they are potential “true” models. Use
Bayesian or other model selection criteriato guide final selection. Often times, it is appropriate to
report all competing models so that others can judge whether aternative interpretation is possible.

The second method uses arbitrary scaling and rescaling methods as the simulation study finds
that any scaling of the size of one group relative to another bears no consequence to the true
model or its over-parameterized counterparts. The following steps can be taken: (a) assign
arbitrary weights to each table and estimate a wide variety of models and use either L2 or L%df as
the criterion for choosing models; (b) repeat step (a) by using other arbitrary weights and estimate
the same set of models for at least three or more times; and (c) compare the performance of all
competing models and use Bayesian or other model selection criteriato guide final selection. All
competing alternative models can be further evaluated by using non-nested models tests
(Weakliem 1992).

Both strategies require more than one set of model estimations. This is necessary in order to

avoid the problem of capitalizing on chance and overfitting in a particular situaton. Note that the
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suggestions assume the existence of sufficient cases for each cell. Sparse cells can pose a major
problem but the problem may be less severe in certain parameteric models and in some occasions,
their location in the tables may or may not be consequential.
The Problem of OverDispersion

The discussion so far ignores the problem of overdispersion, which is extremely common in
survey data. As McCullagh and Nelder (1989:125) remark, it is generally wise to assume the
presence of overdispersion unless the data or prior information suggest otherwise. Since the
problem of overdispersion is often related to sampling, it should be corrected before statistical
modeling. Fitmaurice, Heath, and Cox (1997) and Fitmaurice and Goldthorpe (1997) offer rather
simple solution to this particular problem. However, once the correction is made, we should
continue to rely on L?, L%df ratio of 1, and nested chi-squared testsin model comparison and
avoid any further correction on sample size and alike.
Conclusion

The concern about the impact of unequal sample sizes and underlying strength of association
from different tables in cross-classification analysis is a misplaced one. Not only that thereis no
need to adjust the test statistics through standardization, the procedure may inadvertently create
the problem of underdispersion, thereby giving researchers a false security that the no difference
model actually fits well when group differences occur. Since differencesin group size and
strength of association play no role in the likelihood-ratio test statistics when the specified model
istrue, researchers should continue to rely on nominal test statistics and nested chi-squared tests
for group differences. The use of overparameterized and complex models should also be

encouraged in empirical investigations. They would provide researchers better alternatives to
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choose rather than relying simple but poorly specified models. Finally, the two modeling
strategies should be applied routinely in future empirical applications as they would help
researchers to gain confidence that their final models approximate the underlying “true” model. It
is only when researchers can entertain several (but not one) competing models, then we are likely

to achieve the twin goals of science: accuracy and parsimony.
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Table 1
Simulated Conditions to Study the Effects of Sample Size and
Strength of Association on the Detection of Group Differences

Intrinsic Association (¢)

Huge Difference Large Difference Small Difference No Difference
Sample Size (N) (@ ratio=4) (p ratio=2) (p ratio=1.5) (p ratio=1)
Huge Difference 1,2 3,4 5 6 7
(size ratio=12)
Large Difference 8,9 10, 11 12, 13 14
(size ratio=6)
Small Difference 15, 16 17, 18 19, 20 21
(size ratio=2)
No Difference 22 23 24 25
(size ratio=1)

Note: 100 simulated tables are constructed for each simulated condition. Entries with two conditions indicate that the
ordering of group size and strength of association may be consequential.



Table 2
Condition 1: Huge Difference in Association, Huge Difference in Group Size

Model Description df  L? p L2 P
(8 HH1R: N,=1,000, @,=4.0; N,=12,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 6931 000 2808 0.00
2. Full Two-Way Interaction Model (FI) 12 1269 000 827 0.00
3. Log-Linear Layer Effect Model (LL,) 11 137 0.89 89 0.99
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.6 0.96 26 1.00
5. Homogeneous UA Modd (UA)) 23 1398 000 933 0.00
6. Heterogeneous UA Model (UA)) 22 283 077 162 1.00
7. Homogeneous RC Mode (RC)) 18 1338 000 89.6 0.00
8. Heterogeneous RC Model (RC,) 12 124 095 72 1.00
9. Simple Heterogeneous RC Model (RC,) 17 173 094 82 100
10. Homogeneous Topological Model (TOP,) 20 1574 0.00 1021 0.00

11. Heterogeneous Topologica Model (TOPR,) 16 463 003 243 0.69
12. Topological Model with Log-Multiplicative 19 500 002 252 0.76
Layer Effect (TOP;)

(b) HH2R: N,=12,000, ¢,=4.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 2796.1 0.00 2769 0.00
2. Full Two-Way Interaction Model (FI) 12 2090 0.00 770 0.00
3. Log-Linear Layer Effect Model (LL,) 11 128 084 56 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.6 0.95 9.2 0.99
5. Homogeneous UA Model (UA)) 23 2472 000 902 0.00
6. Heterogeneous UA Model (UA)) 22 561 004 146 1.00
7. Homogeneous RC Model (RC)) 18 3368 000 846 0.00
8. Heterogeneous RC Model (RC,) 12 111 099 59 1.00
9. Simple Heterogeneous RC Model (RC,) 17 163 096 105 1.00
10. Homogeneous Topologica Model (TOP,) 20 3924 000 984 0.00

11. Heterogeneous Topological Model (TOPR,) 16 1887 000 239 0.74
12. Topological Model with Log-Multiplicative 19 1917 000 265 0.77
Layer Effect (TOP;)




Table 3
Condition 2: Huge Difference in Association, Large Difference in Group Size

Model Description df  L? p L2 P
(8 LH1R: N,=1,000, @,=4.0; N,=6,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 4723 000 2765 0.00
2. Full Two-Way Interaction Model (FI) 12 1158 000 79.2 0.00
3. Log-Linear Layer Effect Model (LL,) 11 119 095 82 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.1 0.95 33 100
5. Homogeneous UA Model (UA)) 23 1291 000 893 0.00
6. Heterogeneous UA Model (UA)) 22 257 088 152 1.00
7. Homogeneous RC Mode (RC)) 18 1228 000 852 0.00
8. Heterogeneous RC Model (RC,) 12 115 096 6.7 1.00
9. Simple Heterogeneous RC Model (RC,) 17 162 097 8.0 1.00
10. Homogeneous Topological Model (TOP,) 20 1397 000 981 0.00

11. Heterogeneous Topologica Model (TOPR,) 16 371 012 238 0.67
12. Topological Model with Log-Multiplicative 19 403 012 248 0.78
Layer Effect (TOP;)

(b) LH2R: N,=6,000, @,=4.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 14284 0.00 2775 0.00
2. Full Two-Way Interaction Model (FI) 12 1782 000 786 0.00
3. Log-Linear Layer Effect Model (LL,) 11 122 092 58 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.3 0.96 89 0.99
5. Homogeneous UA Model (UA)) 23 2051 000 904 0.00
6. Heterogeneous UA Model (UA)) 22 386 035 153 1.00
7. Homogeneous RC Model (RC)) 18 1953 000 858 0.00
8. Heterogeneous RC Model (RC,) 12 119 092 6.6 1.00
9. Simple Heterogeneous RC Model (RC,) 17 166 094 108 1.00
10. Homogeneous Topological Model (TOP,) 20 2751 000 983 0.00

11. Heterogeneous Topological Model (TOPR,) 16 1016 000 241 0.75
12. Topological Model with Log-Multiplicative 19 1044 000 266 0.82
Layer Effect (TOP;)




Table 4
Condition 3: Huge Difference in Association, Small Difference in Group Size

Model Description df  L? p L2 P
(8 SH1R: N,=1,000, @,=4.0; N,=2,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 3226 000 2808 0.00
2. Full Two-Way Interaction Model (FI) 12 1014 000 826 0.00
3. Log-Linear Layer Effect Model (LL,) 11 118 0.95 96 0.99
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.9 1.00 6.3 1.00
5. Homogeneous UA Modd (UA)) 23 1161 000 950 0.00
6. Heterogeneous UA Model (UA)) 22 248 091 191 0.98
7. Homogeneous RC Mode (RC)) 18 1103 000 90.3 0.00
8. Heterogeneous RC Model (RC,) 12 119 097 89 100
9. Simple Heterogeneous RC Model (RC,) 17 169 100 117 100
10. Homogeneous Topological Model (TOP,) 20 1241 000 1036 0.00

11. Heterogeneous Topologica Model (TOPR,) 16 330 032 275 047
12. Topological Model with Log-Multiplicative 19 361 028 292 0.58
Layer Effect (TOP;)

(b) SH2R: N,=2,000, ¢,=4.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 5190 0.00 2842 0.00
2. Full Two-Way Interaction Model (FI) 12 1200 0.00 806 0.00
3. Log-Linear Layer Effect Model (LL,) 11 125 0.89 8.7 0.99
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.7 0.93 9.8 0.96
5. Homogeneous UA Model (UA)) 23 1414 000 952 0.00
6. Heterogeneous UA Model (UA)) 22 291 071 201 0.96
7. Homogeneous RC Mode (RC,) 18 1337 0.00 893 0.00
8. Heterogeneous RC Model (RC,) 12 120 091 89 0.98
9. Simple Heterogeneous RC Model (RC,) 17 167 094 134 0.97
10. Homogeneous Topological Model (TOP,) 20 1523 0.00 1021 0.00

11. Heterogeneous Topological Model (TOPR,) 16 447 006 266 056
12. Topological Model with Log-Multiplicative 19 482 009 298 0.52
Layer Effect (TOP;)




Table 5
Condition 4: Huge Difference in Association, No Difference in Group Size

Model Description df  L? p
(8 NH1R: N,=1,000, @,=4.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 2936 0.00
2. Full Two-Way Interaction Model (FI) 12 88.7 0.00
3. Log-Linear Layer Effect Model (LL,) 11 123 0.88
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.2 0.96
5. Homogeneous UA Modd (UA)) 23 1053 0.00
6. Heterogeneous UA Model (UA)) 22 264 081
7. Homogeneous RC Mode (RC)) 18 105.3 0.00
8. Heterogeneous RC Model (RC,) 12 126 097
9. Simple Heterogeneous RC Model (RC,) 17 175 094
10. Homogeneous Topological Model (TOP,) 20 1115 0.00

11. Heterogeneous Topologica Model (TOPR,) 16 319 031
12. Topological Model with Log-Multiplicative 19 349 037
Layer Effect (TOP;)




Table 6
Condition 5: Large Difference in Association, Huge Difference in Group Size

Model Description df  L? p L2 P
(8 HL1R: N,=1,000, @,=2.0; N,=12,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 5242 000 1209 0.00
2. Full Two-Way Interaction Model (FI) 12 283 020 179 0.67
3. Log-Linear Layer Effect Model (LL,) 11 109 094 6.5 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11 105 0.94 33 100
5. Homogeneous UA Modd (UA)) 23 420 033 237 092
6. Heterogeneous UA Model (UA)) 22 258 089 129 1.00
7. Homogeneous RC Mode (RC)) 18 346 030 211 0.85
8. Heterogeneous RC Model (RC,) 12 121 093 6.4 1.00
9. Simple Heterogeneous RC Model (RC,) 17 167 097 8.0 1.00
10. Homogeneous Topologica Model (TOP,) 20 535 003 261 0.75

11. Heterogeneous Topologica Model (TOPR,) 16 345 027 134 0.96
12. Topological Model with Log-Multiplicative 19 373 025 143 0.98
Layer Effect (TOP;)

(b) HL2R: N,=12,000, ¢,=2.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 9286 000 1222 0.00
2. Full Two-Way Interaction Model (FI) 12 383 006 159 0.87
3. Log-Linear Layer Effect Model (LL,) 11 115 090 56 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11 111 0.94 82 0.99
5. Homogeneous UA Model (UA)) 23 569 002 230 0.96
6. Heterogeneous UA Model (UA)) 22 333 054 131 1.00
7. Homogeneous RC Mode (RC,) 18 447 010 197 091
8. Heterogeneous RC Model (RC,) 12 121 093 6.8 0.99
9. Simple Heterogeneous RC Model (RC,) 17 170 092 104 1.00
10. Homogeneous Topologica Model (TOP,) 20 910 000 256 081

11. Heterogeneous Topological Model (TOPR,) 16 629 000 145 0.96
12. Topological Model with Log-Multiplicative 19 654 000 164 0.97
Layer Effect (TOP;)




Table 7
Condition 6: Large Difference in Association, Large Difference in Group Size

Model Description df  L? p L2 P
(8 LL1R: N,=1,000, ¢,=2.0; N,=6,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 3150 000 1231 0.00
2. Full Two-Way Interaction Model (FI) 12 275 023 183 0.75
3. Log-Linear Layer Effect Model (LL,) 11 113 091 7.2 100
4. Log-Multiplicative Layer Effect Model (LL,) 11 11.2 0.94 44 1.00
5. Homogeneous UA Modd (UA)) 23 334 035 216 0.95
6. Heterogeneous UA Model (UA)) 22 240 089 137 1.00
7. Homogeneous RC Mode (RC)) 18 334 030 216 0.89
8. Heterogeneous RC Model (RC,) 12 119 095 6.9 1.00
9. Simple Heterogeneous RC Model (RC,) 17 169 095 8.8 1.00
10. Homogeneous Topologica Model (TOP,) 20 448 008 26.7 0.80

11. Heterogeneous Topologica Model (TOPR,) 16 270 053 143 0.96
12. Topological Model with Log-Multiplicative 19 297 057 154 0.97
Layer Effect (TOP;)

(b) LL2R: N,=6,000, ,=2.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 500.1 0.00 1240 0.00
2. Full Two-Way Interaction Model (FI) 12 347 007 164 0.80
3. Log-Linear Layer Effect Model (LL,) 11 111 093 59 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.8 0.94 82 1.00
5. Homogeneous UA Model (UA)) 23 487 011 238 094
6. Heterogeneous UA Model (UA)) 22 270 083 137 1.00
7. Homogeneous RC Mode (RC,) 18 406 015 198 0.96
8. Heterogeneous RC Model (RC,) 12 11.0 1.00 6.2 1.00
9. Simple Heterogeneous RC Model (RC,) 17 164 098 104 1.00
10. Homogeneous Topological Model (TOP,) 20 640 001 252 0.82

11. Heterogeneous Topological Model (TOPR,) 16 382 015 133 100
12. Topological Model with Log-Multiplicative 19 416 017 160 1.00
Layer Effect (TOP;)




Table 8
Condition 7: Large Difference in Association, Small Difference in Group Size

Model Description df  L? p L2 P
(8 SL1R: N,=1,000, @,=2.0; N,=2,000, ¢,=1.0

1. Condltlonal Independence Model (cn 24 1711 000 1291 0.00
2. Full Two-Way Interaction Model (FI) 12 260 035 209 061
3. Log-Linear Layer Effect Model (LL,) 11 113 095 88 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.8 0.95 6.7 1.00
5. Homogeneous UA Modd (UA)) 23 374 048 293 0.75
6. Heterogeneous UA Model (UA)) 22 233 091 177 0.98
7. Homogeneous RC Mode (RC)) 18 321 044 255 0.70
8. Heterogeneous RC Model (RC,) 12 117 097 8.8 0.99
9. Simple Heterogeneous RC Model (RC,) 17 169 095 121 0.99
10. Homogeneous Topological Model (TOP,) 20 393 027 310 056

11. Heterogeneous Topologica Model (TOPR,) 16 220 074 168 0.91
12. Topological Model with Log-Multiplicative 19 251 073 187 0.96
Layer Effect (TOP;)

(b) SL2R: N,=2,000, ¢,=2.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 2082 000 1274 0.00
2. Full Two-Way Interaction Model (FI) 12 290 021 201 056
3. Log-Linear Layer Effect Model (LL,) 11 111 095 8.0 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.8 0.98 94 0.99
5. Homogeneous UA Model (UA)) 23 403 034 286 0.82
6. Heterogeneous UA Model (UA)) 22 232 09 170 1.00
7. Homogeneous RC Model (RC)) 18 349 027 245 0.74
8. Heterogeneous RC Model (RC,) 12 118 095 8.8 0.99
9. Simple Heterogeneous RC Model (RC,) 17 165 098 129 1.00
10. Homogeneous Topologica Model (TOP,) 20 446 008 304 064

11. Heterogeneous Topological Model (TOPR,) 16 246 062 168 0.96
12. Topological Model with Log-Multiplicative 19 274 069 192 0.98
Layer Effect (TOP;)




Table 9
Condition 8: Large Difference in Association, No Difference in Group Size

Model Description df  L? p
(8 NL1R: N,=1,000, @,=2.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 1359 0.00
2. Full Two-Way Interaction Model (FI) 12 219 0.52
3. Log-Linear Layer Effect Model (LL,) 11 115 096
4. Log-Multiplicative Layer Effect Model (LL,) 11 114 091
5. Homogeneous UA Modd (UA)) 23 333 061
6. Heterogeneous UA Model (UA)) 22 234 092
7. Homogeneous RC Mode (RC)) 18 284 055
8. Heterogeneous RC Model (RC,) 12 125 094
9. Simple Heterogeneous RC Model (RC,) 17 177 094
10. Homogeneous Topologica Model (TOP,) 20 342 042

11. Heterogeneous Topologica Model (TOPR,) 16 213 077
12. Topological Model with Log-Multiplicative 19 242 0.78
Layer Effect (TOP;)




Table 10
Condition 9: Small Difference in Association, Huge Difference in Group Size

Model Description df  L? p L2 P
(8 HS1R: N,=1,000, @,=1.5; N,=12,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 5069 000 933 0.00
2. Full Two-Way Interaction Model (FI) 12 167 075 103 1.00
3. Log-Linear Layer Effect Model (LL,) 11 114 0.95 6.9 0.99
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.3 0.95 47 100
5. Homogeneous UA Modd (UA)) 23 313 070 16.2 1.00
6. Heterogeneous UA Model (UA)) 22 266 077 132 1.00
7. Homogeneous RC Mode (RC)) 18 230 077 135 1.00
8. Heterogeneous RC Model (RC,) 12 124 092 6.7 1.00
9. Simple Heterogeneous RC Model (RC,) 17 176 0.92 91 100
10. Homogeneous Topological Model (TOP,) 20 431 018 181 0.98

11. Heterogeneous Topologica Model (TOPR,) 16 357 018 133 1.00
12. Topological Model with Log-Multiplicative 19 385 026 146 0.99
Layer Effect (TOP;)

(b) HS2R: N,=12,000, ¢,=1.5; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 5754 000 912 0.00
2. Full Two-Way Interaction Model (FI) 12 193 0.63 8.8 1.00
3. Log-Linear Layer Effect Model (LL,) 11 109 0.92 55 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.8 0.92 6.9 1.00
5. Homogeneous UA Model (UA)) 23 345 055 153 1.00
6. Heterogeneous UA Model (UA)) 2 275 08 123 1.00
7. Homogeneous RC Mode (RC,) 18 247 072 119 100
8. Heterogeneous RC Model (RC,) 12 111 096 6.2 1.00
9. Simple Heterogeneous RC Model (RC,) 17 161 093 9.3 1.00
10. Homogeneous Topologica Model (TOP,) 20 533 006 167 0.99

11. Heterogeneous Topological Model (TOPR,) 16 421 011 120 0098
12. Topological Model with Log-Multiplicative 19 455 012 142 0.98
Layer Effect (TOP;)




Table 11
Condition 10: Small Difference in Association, Large Difference in Group Size

Model Description df  L? p L2 P
(8 LS1R: N,=1,000, @,=1.5; N,=6,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 2860 000 929 0.00
2. Full Two-Way Interaction Model (FI) 12 160 084 102 0.99
3. Log-Linear Layer Effect Model (LL,) 11 111 094 6.9 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.1 0.95 51 1.00
5. Homogeneous UA Modd (UA)) 23 291 080 166 0.99
6. Heterogeneous UA Model (UA)) 22 248 087 136 0.99
7. Homogeneous RC Mode (RC)) 18 220 087 136 0.99
8. Heterogeneous RC Model (RC,) 12 117 096 6.7 0.99
9. Simple Heterogeneous RC Model (RC,) 17 171 0.95 94 0.99
10. Homogeneous Topological Model (TOP,) 20 332 050 176 0.97

11. Heterogeneous Topologica Model (TOPR,) 16 259 057 127 0.98
12. Topological Model with Log-Multiplicative 19 290 058 142 0.98
Layer Effect (TOP;)

(b) LS2R: N,=6,000, ¢,=1.5; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 3156 000 927 0.00
2. Full Two-Way Interaction Model (FI) 12 188 0.65 9.8 1.00
3. Log-Linear Layer Effect Model (LL,) 11 118 094 6.6 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.7 0.93 8.0 100
5. Homogeneous UA Model (UA)) 23 317 072 169 1.00
6. Heterogeneous UA Model (UA)) 2 259 087 142 1.00
7. Homogeneous RC Mode (RC,) 18 250 074 133 100
8. Heterogeneous RC Model (RC,) 12 121 096 70 1.00
9. Simple Heterogeneous RC Model (RC,) 17 178 093 108 1.00
10. Homogeneous Topologica Model (TOP,) 20 406 021 177 1.00

11. Heterogeneous Topological Model (TOPR,) 16 311 034 131 0098
12. Topological Model with Log-Multiplicative 19 344 035 154 0.99
Layer Effect (TOP;)




Table 12
Condition 11: Small Difference in Association, Small Difference in Group Size

Model Description df  L? p L2 P
(8) SS1R: N,=1,000, @,=1.5; N,=2,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 1363 000 952 0.00
2. Full Two-Way Interaction Model (FI) 12 158 077 124 094
3. Log-Linear Layer Effect Model (LL,) 11 115 091 89 0.98
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.2 0.95 75 1.00
5. Homogeneous UA Modd (UA)) 23 272 085 208 0.98
6. Heterogeneous UA Model (UA)) 22 235 094 179 0.99
7. Homogeneous RC Mode (RC)) 18 217 084 168 0.97
8. Heterogeneous RC Model (RC,) 12 118 095 89 0.99
9. Simple Heterogeneous RC Model (RC,) 17 172 092 126 100
10. Homogeneous Topological Model (TOP,) 20 281 069 214 0.89

11. Heterogeneous Topologica Model (TOPR,) 16 213 074 159 0.92
12. Topological Model with Log-Multiplicative 19 240 077 178 0.96
Layer Effect (TOP;)

(b) SS2R: N,=2,000, ,=1.5: N,=1,000, ¢,=1.0

1 Condltlonal Independence Model () 24 1468 000 96.7 0.00
2. Full Two-Way Interaction Model (FI) 12 176 074 125 0.96
3. Log-Linear Layer Effect Model (LL,) 11 116 094 85 097
4. Log-Multiplicative Layer Effect Model (LL,) 11 11.2 0.94 9.2 097
5. Homogeneous UA Model (UA)) 23 298 075 214 0.99
6. Heterogeneous UA Model (UA)) 2 245 092 178 1.00
7. Homogeneous RC Mode (RC,) 18 243 078 173 095
8. Heterogeneous RC Model (RC,) 12 127 095 9.3 0.99
9. Simple Heterogeneous RC Model (RC,) 17 181 095 137 0.99
10. Homogeneous Topologica Model (TOP,) 20 310 054 216 093

11. Heterogeneous Topological Model (TOPR,) 16 225 075 157 0.98
12. Topological Model with Log-Multiplicative 19 256 074 182 0.98
Layer Effect (TOP;)




Table 13
Condition 12: Small Difference in Association, No Difference in Group Size

Model Description df  L? p
(8 NS1R: N,=1,000, @,=1.5; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 102.7 0.00
2. Full Two-Way Interaction Model (FI) 12 156 0.82
3. Log-Linear Layer Effect Model (LL,) 11 114 097
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.1 0.98
5. Homogeneous UA Modd (UA)) 23 278 084
6. Heterogeneous UA Model (UA)) 22 243 0.93
7. Homogeneous RC Mode (RC)) 18 221 0.82
8. Heterogeneous RC Model (RC,) 12 122 095
9. Simple Heterogeneous RC Model (RC,) 17 178 097
10. Homogeneous Topologica Model (TOP,) 20 272 0.75

11. Heterogeneous Topologica Model (TOPR,) 16 206 0.82
12. Topological Model with Log-Multiplicative 19 235 084
Layer Effect (TOP;)




Table 14

Condition 13: No Difference in Association, Huge Difference in Group Size

Model Description df  L? p L2 P
(8 HN1R: N,=1,000, @,=1.0; N,=12,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 47777 000 686 0.00
2. Full Two-Way Interaction Model (FI) 12 124 0.96 71 1.00
3. Log-Linear Layer Effect Model (LL,) 11 111 0.96 6.3 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.1 0.96 6.0 1.00
5. Homogeneous UA Modd (UA)) 23 276 080 134 1.00
6. Heterogeneous UA Model (UA)) 22 263 083 125 1.00
7. Homogeneous RC Mode (RC)) 18 182 0.96 96 1.00
8. Heterogeneous RC Model (RC,) 12 112 099 6.0 1.00
9. Simple Heterogeneous RC Model (RC,) 17 169 09% 104 1.00
10. Homogeneous Topological Model (TOP,) 20 354 037 133 100
11. Heterogeneous Topologica Model (TOPR,) 16 312 033 106 1.00
12. Topological Model with Log-Multiplicative 19 340 035 123 1.00

Layer Effect (TOP;)




Table 15

Condition 14: No Difference in Association, Large Difference in Group Size

Model Description df  L? p L2 P
(8 LN1R: N,=1,000, @,=1.0; N,=6,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 2637 000 705 0.00
2. Full Two-Way Interaction Model (FI) 12 109 097 6.8 1.00
3. Log-Linear Layer Effect Model (LL,) 11 101 0.98 6.3 1.00
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.0 0.97 57 1.00
5. Homogeneous UA Model (UA)) 23 242 094 131 1.00
6. Heterogeneous UA Model (UA)) 22 235 090 126 1.00
7. Homogeneous RC Mode (RC)) 18 16.6 0.99 9.8 1.00
8. Heterogeneous RC Model (RC,) 12 106 0.99 58 1.00
9. Simple Heterogeneous RC Model (RC,) 17 158 0.99 9.0 1.00
10. Homogeneous Topological Model (TOP,) 20 277 060 131 1.00
11. Heterogeneous Topologica Model (TOPR,) 16 241 061 108 1.00
12. Topological Model with Log-Multiplicative 19 269 061 125 1.00

Layer Effect (TOP;)




Table 16

Condition 15: No Difference in Association, Small Difference in Group Size

Model Description df  L? p L2 P
(8 SN1R: N,=1,000, @,=1.0; N,=2,000, ¢,=1.0

1. Condltlonal Independence Model (cn 24 1167 000 732 0.00
2. Full Two-Way Interaction Model (FI) 12 118 094 9.2 1.00
3. Log-Linear Layer Effect Model (LL,) 11 107 094 83 100
4. Log-Multiplicative Layer Effect Model (LL,) 11  10.7 0.95 82 0.99
5. Homogeneous UA Modd (UA)) 23 240 094 177 1.00
6. Heterogeneous UA Model (UA)) 22 229 093 168 1.00
7. Homogeneous RC Mode (RC)) 18 180 094 137 1.00
8. Heterogeneous RC Model (RC,) 12 116 094 85 1.00
9. Simple Heterogeneous RC Model (RC,) 17 169 09 129 1.00
10. Homogeneous Topological Model (TOP,) 20 232 083 168 100
11. Heterogeneous Topologica Model (TOPR,) 16 189 089 134 0.99
12. Topological Model with Log-Multiplicative 19 221 085 159 0.99

Layer Effect (TOP;)




Table 17
Condition 16: No Difference in Association, No Difference in Group Size

Model Description df  L? p
(8 NN1R: N,=1,000, ¢,=1.0; N,=1,000, ¢,=1.0

1 Condltlonal Independence Model (Cn 24 774 0.00
2. Full Two-Way Interaction Model (FI) 12 124 0093
3. Log-Linear Layer Effect Model (LL,) 11  11.3 093
4. Log-Multiplicative Layer Effect Model (LL,) 11  11.1 091
5. Homogeneous UA Modd (UA)) 23 236 095
6. Heterogeneous UA Model (UA)) 22 225 0.95
7. Homogeneous RC Mode (RC)) 18 18.0 093
8. Heterogeneous RC Model (RC,) 12 11.3 096
9. Simple Heterogeneous RC Model (RC,) 17 167 0.93
10. Homogeneous Topologica Model (TOP,) 20 222 091

11. Heterogeneous Topologica Model (TOPR,) 16 181 0.89
12. Topological Model with Log-Multiplicative 19 210 092
Layer Effect (TOP;)




Table 18
Summary of the Usefulness of Chi-Square Difference Test to Detect Group Differences

A1 Als Az AZS AS A3S A4 A4s AS A5S AG AGS A? A75

HHIR 100 100 100 100 100 100 100 100 100 100 100 100 100 100
HHZ2R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
LHIR 100 100 100 100 100 100 100 100 100 100 100 100 100 100
LH2R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SH1R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SH2R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
NHI1R 100 --- 100 -- 100 --- 100 --- 100 -- 100 -- 100 ---
HLI1R 97 92 9% 96 94 89 84 61 96 95 84 67 95 92
HL2R 100 98 100 86 100 97 97 52 100 92 98 65 100 96
LLIR 99 9% 97 100 100 95 88 62 99 9 88 71 95 94
LL2R 100 87 100 87 100 9% 97 54 100 95 99 67 100 96
SL1R 95 93 9 96 94 93 79 68 96 9% 86 80 94 93
SL2R 99 9% 98 96 98 95 89 65 99 9% 9 77 99 95
NLIR 89 -- 86 --- 87 -- 65 --- 89 -- 66 --- 83 ---
HSIR 55 39 5S4 63 51 35 30 8 54 51 30 5 49 37
HS2R 76 35 77 14 68 25 44 3 75 23 H4 5 74 16
LSIR 47 30 56 62 42 32 26 9 51 47 29 8 44 38
LS2R 74 30 72 13 66 24 43 4 74 21 51 5 68 20
SSIR 50 40 54 57 39 26 26 13 49 47 25 12 41 37
SS2R 60 45 63 35 50 44 40 14 63 40 41 16 52 34
NSIR 39 -- 48 --- 32 - 24 --- 43 - 15 --- 35 ---
HN1R 10 4 1 7 10 7 11 0 9 4 7 0 9 4
LNIR 2 1 4 4 3 0 8 0 2 1 4 0 2 1
SN1R 7 4 8 6 6 3 11 6 6 5 8 3 7 4
NN1R 7 -- 10 --- 9 --- 7 --- 5 --- 3 --- 9 ---

Note: A,=L? difference between FI & LL,; A,=L? difference between FI & LL,; A,=L? difference between UA, & UA,;
A,=L%difference between RC, & RC,; A=L? difference between RC, & RC,; A,=L? difference between TOP, & TOP,; A,=L?
difference between TOP, & TOP,; and A, A,, Ay, A4, A, A, and A, refer to the same L? difference but with standardization.
See text for details



