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Abstract

It is well-known in the statistical li terature that when sample size is large, any small departure

from the “true” model would yield significant test statistics.  This issue is further compounded by

the fact that researchers often face the problem of analyzing groups of unequal sizes and as a

result our abili ty to detect group differences may be hampered.  Even though this topic has not

been investigated systematically, researchers conducting statistical analysis in multi-way

cross-classification tables often adopt various ad hoc standardization procedures to address this

particular problem by inflating and deflating group sizes to comparable values.  Using Monte

Carlo simulations, this study offers an empirical investigation on the effect of (a) varying sizes

across groups, (b) differences in the strength of association between groups, and (c) the ordering

of (a) and (b) on our abili ty to detect differences in association between groups and whether the

standardization procedure offers a viable solution.  The findings confirm that while it is true that

differences in group size and strength of association affect the likelihood-ratio test statistics

significantly when the specified models are incorrect, their influence on the “true” model and its

over-parameterized counterparts is negligible.   In other words, unlike statistical models such as

those in covariance structure analysis, the goodness-of-fit statistics in log-linear models are

independent of sample size when the models specified are “true.”   On the other hand, two

common problems are associated with the standardization procedure: the problem of

underdispersion and the possibili ty of committing type II error in some occasions.  As a result,

standardization does not appear to be a viable strategy and researchers should instead rely on

conventional nested chi-squared tests for detecting group differences.  Finally, the study provides

strategies to examine whether the preferred models indeed are the proper ones.



1The calculation of the likelihood-ratio chi-squared statistic (L2) is the following:
L2 = -2 log 

�
 = 2  ���  nij log (nij/m̂ij)

where �  is the Wilk statistic, nij and m̂ij are observed and expected frequencies under a particular
model (Agresti 1990)..

Introduction

     Most empirical investigations by social science researchers naturally involve comparisons of

different social groups (such as gender, racial/ethnic groups, countries, organizations, and

industries) or temporal trend (such as birth cohorts, time series data, and longitudinal data).  They

include the study of racial and ethnic differences in the relationship between education and

occupation, country-specific variation in occupational mobility, and temporal changes in the

relationship between education and religiosity, political identification, or attitudes toward

abortion.  Furthermore, it is not unusual that the sizes of these groups are unequal, due either to

population distribution or sampling design.  In multiway contingency table analysis, it is generally

believed that varying group sizes, especially when the discrepancy is large, may play a pivotal role

in influencing our ability to detect group differences or temporal trend.  Such belief is further

reinforced by the well-known fact in statistical literature that when the sample size is large, any

small departure from the “true” model would yield significant test statistics and therefore

researchers run considerable risks of identifying trivial differences when in reality these group

differences are negligible.1  As noted by Gelman and Rubin (1995), “it is possible to have so much

data that a test will reject every parsimonious model that is proposed” (p. 166).

     To date, there is little methodological investigation into this particular subject matter (see

Fitzmaurice and Goldthorpe 1997; Fitmaurize, Heath, and Cox 1997; and Wong 1994 for some

exceptions).  Meanwhile, several 1-df tests and other complex statistical models have been

developed for cross-classification analysis that partially address this particular problem (Goodman
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2In particular, Erikson and Goldthorpe (1993) adopt the following correction in each group:
L2(S)=((L2-df )/N)*K+df where L2 is the likelihood-ratio test statistic for a particular group, K is the
standardized size, N is the size of the group, and df is the degree of freedom.

and Hout 1998, 2001; Wong 1990, 1995, 2001; Xie 1992; and Yamaguchi 1987).  While these

statistical models are parsimonious and powerful to detect group differences and therefore offer

important tools to empirical researchers, they do not directly address the concern regarding the

influence of unequal group size on our ability to detect group differences.

     Another strategy to counteract the influence of large and unequal group sizes is to use model

selection criteria.  The most popular one is the BIC (Bayesian Information Criterion) statistic,

derived from the Bayesian posteriori test theory (Raftery 1996; but note the critique by Weakliem

1999).  Alternatively, other researchers adopt various ad hoc standardization procedures to

address the problem.  They include weighing and standardizing individual tables by (a) using the

smallest group as the reference; (b) standardizing them by an arbitrary size (say, 1000), with

inflated sizes for some and deflated for others; or (c) rescaling the contribution of individual

groups to the likelihood-ratio test statistics by using a standardized index.2  In some occasions,

researchers combine these two strategies together (that is, adopting both standardization and the

BIC statistic).  Of course, there are also works that make no correction and assume that varying

group sizes have no impact whatsoever in the detection of differences across tables (for instance,

Goodman and Hout 2001; Wong 2001).

     Given the multitudes of strategies available, empirical researchers may be confused what

constitutes the best strategy.  With little systematic and empirical investigation of the behavior of

these strategies in realistic conditions, researchers and critics often wonder if the adoption of a

different strategy may lead to dramatically different conclusions.   Furthermore, empirical
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3There is only a close approximation (but not exact relationship) between the simulated
data and the estimated models.  There is also overdispersion in some of the test statistics (Wong
1994).  Both problems are corrected in the present study.

researchers would also want to understand the properties of these strategies under various

conditions and under what circumstances would one prefer a particular strategy over another.

     Generally speaking, we need to consider the following factors in the investigation: (a) the

degree of variation in group sizes; (b) the degree of variation in the strength of association across

groups; (c) the ordering of (a) and (b); and (d) the number of groups involved in comparison. 

Owing to the design complexity, the present investigation will consider only two groups and

examine only whether the detection of group differences should be based on standardized or

unstandardized counts.  However, the findings (detailed below) should have broader

generalization to analyses with more than two groups and other standardization procedures.  In

sum, the present study uses Monte Carlo simulations to study the extent to which differences in

group size, strength of association and their ordering affect our ability to detect differences and

whether statistical analysis should be based on standardized or unstandardized counts.

     The present study is partly motivated by the works of Fitzmaurice and Goldthorpe (1997),

Fitmaurize, Heath, and Cox (1997), and Wong (1994).  However, it differs from them in the

following ways.  Wong (1994) only considered a limited set of conditions in the Monte Carlo

simulations and the major goals of this particular work is to compare how various model selection

criteria (AIC, BIC, nested chi-square tests, and L2/df ratio) affect our ability to detect group

differences.  It does not consider the full range of conditions as in this work nor does it consider

how the practice of standardization affects the outcome.3  The study differs from Fitzmaurice and

Goldthorpe (1997) and Fitzmaurice, Heath, and Cox (1997), where their major concern is how
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4Overdispersion occurs when the data display more variability than is predicted by the
variance-mean relationship for the assumed sampling model.

the problem of overdispersion significantly influence our ability to detect group differences.4   As

their works illustrate convincingly, the problem of overdispersion is common in most survey

samples, arising from a variety of conditions, design effects (particularly when there is a mix of

different sampling schemes), hidden clusters, interviewer effects, and omission of relevant

predictors.  An important consequence of overdispersion is that it typically favors models that are

too complex or rejects any model that is approximately “true,” including situations where there is

no difference between groups.  In sum, the sampling issue and the problem of overdispersion is a

persistent and critical subject in empirical research.  However, the overdispersion problem will not

be directly addressed in the simulation design.  It will be included in the discussion section on how

to combine findings from Monte Carlo simulations with corrections for overdispersion to examine

group differences in association.

Monte Carlo Simulations

     Consider the following simple heterogeneous log-multiplicative row and column effects (RC)

model (Goodman 1979) for a three-way table with row (R), column (C), and layer (L) variables,

with the layer variable representing the grouping variable.  The expected frequency for a

particular cell, (i, j, k) can be written as the following:

log mijk = u + ui + uj + uk + uik + ujk + � k � i � j (1)

where mijk is the expected frequency under the model; u is the overall parameter, ui, uj, uk, uik, and

ujk are all one-way or two-way marginal parameters, subject to conventional normalization, � k is

the intrinsic association parameter, and � i and � j are the estimated row and column scores,
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5The master datasets are generated by using the OFFSET command in the statistical
software, GLIM (Francis, Green, and Payne 1993).

respectively, subject to the following constraints: �  � i = �  � j = 0 and �  � 2
i = �  � 2

j = 1.  For the

sake of simplicity, the simulation study is based on the 4 x 5 x 2 table and the row and column

scores are fixed to have the following values: -0.668, -0.198, 0.169, and 0.697 for row scores and

-0.610, -0.330, -0.029, 0.329, and 0.640 for column scores.  In other words, only � k are allowed

to vary across groups according to the conditions specified below.  Depending on the

specification of simulated conditions, a total of 50,000 observations are generated for each group

and served as the population.5  Observations are then randomly drawn from each group using the

sampling with replacement technique.

Table 1 About Here

     By limiting the number of groups to two, we only need to consider three factors in the Monte

Carlo simulations: (a) varying size across groups, (b) varying strength of association across

groups, and (c) the ordering of variation of (a) and (b).  Four different scenarios will be

considered for the first two factors: huge, large, moderate, and no difference.  To avoid

complications arising from sparse cells, the smallest size for any table is 1000.  Similarly, the

smallest intrinsic association parameter in any group is set to 1.  The exact specifications are

detailed as the following:

(A) Degree of variation in group size: (a) huge difference (the ratio is 12); (b) large difference

(the ratio is 6); (c) small difference (the ratio is 2); and (d) no difference (the ratio is 1);
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6The topological model has the following design:
2 2 2 3 3
2 2 2 3 4
3 3 3 1 1
3 3 4 4 1

See Hauser (1978) for details about the utility of topological models in mobility analysis.

(B) Degree of variation in the strength of intrinsic association ( � ) parameter: (a) huge difference

(the ratio is 4); (b) large difference (the ratio is 2); (c) small difference (the ratio is 1.5); and (d)

no difference (the ratio is 1); and

(C) Ordering of variation in (A) & (B): whether the group with larger size also has greater value

in the intrinsic association parameter ( � ) than the other group and vice versa.

     The combination of (A), (B), and (C) yields a total of 25 unique conditions (see Table 1) as the

ordering makes no difference for entries in the last row or column (that is, no difference in the

strength of association or group size).  A total of 100 replicates are then randomly drawn for each

condition.  In other words, the simulation exercise studies a total of 2,500 three-way tables.  The

following models are then applied to the tables to test for group differences.  They include: (1)

conditional independence model (CI), (b) full two-way interaction model (FI), (c) log-linear layer

effects model (LL1), (d) log-multiplicative layer effects model (LL2), (e) homogeneous uniform

association model (UA1), (f) heterogeneous uniform association model (UA2), (g)

homogeneous log-multiplicative row and column effects model (RC1), (h) heterogeneous

log-multiplicative row and column effects model (RC2), (i) simple heterogeneous

log-multiplicative row and column effects model (RC3), (j) homogeneous topological model

(TOP1), (k) heterogeneous topological model (TOP2), and (l) topological model with

log-multiplicative layer effect (TOP3).
6  In particular, RC1 would be the true model if there is no
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difference in strength of association and RC3 would be the true one when differences occur

whereas LL1, LL2, and RC2 can also be regarded as the true but over-parameterized models when

differences occur.  Finally, the topological models gauge the effect of misspecified models as we

usually would not know which one is the true model.  The goodness-of-fit statistics will be

calculated based on either unstandardized or standardized counts.  In the latter case, both groups

will be standardized to have 1000 observations.

Results

(a) Effects of Group Size When Difference in Intrinsic Association is Huge

     Tables 2-5 report the results of various statistical models to examine the effect of differential

group size (huge, large, small, and no difference) when the difference in intrinsic association is

huge (that is, �  ratio of 4).  Judging from the likelihood-ratio test statistics for the conditional

independence (CI) and full two-way interaction (FI) models, the results confirm that the effect of

sample size can be large for poorly specified or misspecified models.  The problem is particularly

acute when group size and the strength of association are both huge relative to the other group. 

For instance, the likelihood-ratio test statistic for CI in condition HH2R is about 4 times larger

than HH1R (2796 versus 693).  As the discrepancy between the size of the two groups narrows,

the ratio of difference in the likelihood-ratio test statistics also narrows, to less than 3 times when

the discrepancy in group size is large and only about 1.6 times when the discrepancy is small (see

Tables 2, 3, and 4).  On the other hand, when groups are standardized to have the same size, the

impact of differential group size is under control.  The likelihood-ratio test statistics in HH1R,

HH2R, LH1R, LH2R, SH1R, and SH2R all display similar values; the range is between 277 and

284.  Similar observation can be found for the full two-way interaction model (FI).  Thus, when
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models are misspecified, the standardization procedure eliminates the influence of differential

group size.  This makes intuitive sense as it is why the procedure is proposed in the first place.

Tables 2-5 About Here

     Relative to the full two-way interaction model, the two layer effects model (LL1 and LL2) both

offer acceptable results when using unstandardized counts.  Contrary to expectation, the effect of

unequal group size is extremely weak (L2=10 to 14 with 11 df).  In the case of the “approximately

true” model, the goodness-of-fit statistics for the heterogeneous uniform association (UA 2) model

are acceptable at the conventional 0.05 significance level as long as the strength of intrinsic

association and differential group size are not concurrently larger than the other group.  The L2

values are 28, 26, and 25 for HH1R, LH1R, SH1R, and NH1R, respectively, with 22 df. 

However, when the strength of intrinsic association and group size within one group are both

larger than the other, the likelihood-ratio test statistics are not acceptable when differential group

size is either huge (HH2R) or large (LH2R) (56 and 39 points, respectively) but are acceptable in

other conditions.  While the impact of differential group size is evident here, its impact is much

weaker than expected.  The range of the test statistics for UA2 is still quite large (more than 31

chi-squared points apart).  The range narrows considerably when standardized counts are used

and they are acceptable by conventional level of significance.  The same, however, cannot be said

to the two over-parameterized models (LL1 and LL2), where the problem of underdispersion is

evident.  That is, the test statistics of the specified models are smaller than their associated

degrees of freedom.

     When we examine the performance of the true model (the simple heterogeneous RC model,

RC3) and its overparameterized counterpart (heterogeneous RC model, RC2), we observe that
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disregarding whether there is any discrepancy in group sizes, the goodness-of-fit statistics for

unstandardized counts do not vary across conditions and the L2/df ratios are very close to 1.  This

validates our statistical understanding of log-linear modeling that the test statistics and degrees of

freedom have the same value when the model is true, a fact that has been widely ignored by

empirical researchers who are more concerned with how sample size may affect our ability to

detect group differences when there are minor departures from the true model.  Again, while the

performance of the same models is acceptable when using standardized counts, the problem of

underdispersion is self-evident.

     Under normal circumstances, researchers would not be able to know a priori what the true

model is and therefore almost all models estimated are misspecified (in varying degree, of course). 

This is the reason why we include several topological models (lines 10, 11, 12) in the simulation

study.  We experiment several different matrices for the topological design through trial-and-error

and the one presented here yields the best result.  The design matrix does not have the same

monotonic relationship between row and column variables as specified in the simulated condition. 

As expected, the performance of the design matrix is rather poor when the discrepancy in group

size is large, especially in HH2R.  In general, the results are consistent with the discussion earlier

regarding misspecified models: that the standardization procedure is effective in controlling for

the impact of differential group size for misspecified models.  The test statistics for TOP1, TOP2,

and TOP3 are similar in all four tables under standardization.  In the case of TOP3, they are even

acceptable at the conventional significance level, though their L2/df ratios are substantially greater

than 1 (between 1.3 to 1.6). 
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     In sum, the above results strongly indicate that our ability to detect group differences in

association is not hampered by varying group sizes, particularly when the true model is also

specified.  Also, whether the calculation is based on standardized or unstandardized counts, the

contrasts between models postulating no group difference and group difference are always large

and statistically significant.  The risk of committing Type I error is extremely small.  The

standardization procedure is successful in controlling the impact of differential group size on the

goodness-of-fit statistics when the models are misspecified.  At the same time, the standardization

procedure overcorrects the “true” and over-parameterized models, resulting in underdispersion.

(b) Effects of Group Size When Difference in Intrinsic Association is Large

     Tables 6-9 report the results of various statistical models to examine the effect of differential

group size (huge, large, small, and no difference) when the difference in intrinsic association is

large (that is, �  ratio of 2).  Similar to the case earlier, the impact of differential group size is

most noticeable when the difference is huge (a ratio of 12).  As expected, the degree of inflated

goodness-of-fit statistics is substantially smaller for all misspecified models.  For models that are

“true” and their over-parameterized counterparts (that is, LL 1, LL2, RC2, and RC3), differential

group size again does not affect the test statistics in any meaningful way, the L2/df ratios are very

close to 1.

Tables 6-9 About Here

     When we examine the test statistics under standardization, we again observe that the

procedure is able to control for the effect of differential group size on the goodness-of-fit

statistics when the models are misspecified, with highly comparable test statistics ( � � � ) across the

four tables.  The larger the degree of model misspecification, the larger the test statistics.  On the
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other hand, the problem of underdispersion persists for the true model and their

over-parameterized counterparts.  Despite the problem of underdispersion, it should be noted that

accurate conclusions about group differences in the association between row and column variables

nonetheless can still be reached when comparisons are based on nested chi-squared tests.  At the

same time, the model postulating full two-way interaction (FI) with no group differences are

acceptable under standardization even when there is a huge difference in the size of two groups. 

The range of the standardized test statistics ( � � � ) is between 16 and 21 with 12 df, with a

substantial proportion of replicates (over 60 percent in most cases) acceptable at the 0.05 level of

significance.  This strongly cautions against the use of standardized counts in data analysis.  In

contrast, the portion is smaller when unstandardized counts are used (less than 10 percent in

HL2R and LL2R but over 20 percent in HL1R, LL1R, SL1R, SL2R, and NL1R).

(c) Effects of Group Size When Difference in Intrinsic Association is Small

Tables 10-13 report the results of various statistical models to examine the effect of

differential group size (huge, large, small, and no difference) when the difference in intrinsic

association is small (that is, �  ratio of 1.5).  The problem of underdispersion under

standardization is most obvious in this particular case.  Worse still, many models (FI, UA1, RC1,

and TOP1) that postulate no group difference even achieve acceptable goodness-of-fit statistics

( � � � ) and the � � � /df ratios are close to or smaller than 1 in some occasions.  If researchers based on

their analyses solely on standardized counts, they would have concluded that there are no group

differences in association and therefore running the risk of committing type II error (that is,

incorrectly accepting a wrong model or not rejecting a false hypothesis).  Furthermore, one

cannot rely on the nested chi-squared tests to gauge evidence of group differences in association. 



12

Clearly, standardization is not the preferred strategy when group differences in association are

small.  The procedure overcorrects and becomes problematic when the statistical power of the

tests are relatively low.

Tables 10-13 About Here

     On the other hand, the problem is much less obvious when unstandardized counts are used. 

While it is true that the goodness-of-fit of some misspecified models (that is, models that

postulate no group differences in association) are acceptable at the conventional level (for

example, as high as 84 percent for the full two-way interaction model in LS1R), all of them have

the L2/df ratios substantially greater than 1.  Not surprisingly, for the “true” model (RC 3) and its

over-parameterized counterparts (LL1, LL2, and RC2), the ratio of L2 relative to its df continues to

be very close to 1.  On average, the nested chi-squared tests appear to work moderately well.

(d) Effects of Group Size When Difference in Intrinsic Association is None

     Tables 14-17 report the results of various statistical models to examine the effect of differential

group size (huge, large, small, and no difference) when there is no difference in intrinsic

association (that is, �  ratio of 1).  Again, the problem of underdispersion is evident when

adjustments are made to make the two groups comparable.  Fortunately, unlike the previous case,

decisions about group differences do not seem to hamper our decision about group differences. 

With the exception of the conditional independence model, the L2/df ratios for all other models are

substantially less than 1.  

Tables 14-17 About Here

     The pattern is rather similar when raw counts are used.  With the exception of the conditional

independence (CI) and the two uniform association models (UA1 and UA2), the L2/df ratios for all
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other models are very close to 1.  Correct decisions about no group differences can be obtained

from the nested chi-squared tests as none of them are statistically significant at the 0.05 level.  In

sum, the findings here indicate that when there is no group difference in association, the

performance of models based on standardized counts are just as adequate as those based on raw

counts.  Analysis based on raw counts are thus preferred because there is no problem of

underdispersion, created artificially by the weighting procedure itself.

Using Nested Chi-Squared Tests to Detect Group Differences

     The above findings cast doubts against the use of any weighting procedure to correct for

differential group size in log-linear modeling.  At the same time, they also point to the utility of

nested chi-squared tests to detect group differences (Weakliem 1999).  To illustrate further the

performance of the nested chi-squared tests to study group differences, Table 18 summarizes the

contrasts between several homogeneous and heterogeneous models.  A total of seven nested tests

are conducted to check the number of times one can reject the model of no group difference in

association, using the 0.05 level of statistical significance as the cutoff.  They include tests

between FI and LL1 ( � 1); FI and LL2 ( � 2); UA1 and UA2 ( � 3);  RC1 and RC2 ( � 4); RC1 and RC3

( � 5); TOP1 and TOP2 ( � 6); and TOP1 and TOP3 ( � 7) for both unstandardized and standardized

counts.  Each entry represents the number of times that the null hypothesis of no group difference

can be rejected.

Table 18 About Here

     When the underlying difference in association is huge between groups, the nested chi-square

difference tests are able to reject the null hypothesis without difficulty, disregarding whether the

specified models conform to the underlying true model (lines 1 through 7).  The probability of
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rejecting the null hypothesis is identical for both raw and standardized counts.  However, as the

difference in association between groups declines, not all tests perform equally well.  As expected,

the contrasts between RC1 and RC3 ( � 5) provides the best result and is therefore used as the

benchmark for comparison.  When the difference in �  ratio is large, we can reject more than 96

out of 100 times in � 5 whenever the two groups are of different sizes, no matter how small that

discrepancy is.  The performance deteriorates slightly to only 89 percent when the two groups

have equal size.  The performance of other contrasts is highly comparable to � 5, particularly those

involving 1-df tests.  Contrasts based on standardized counts also yield comparable results but

they are clearly somewhat inferior than their unstandardized counterparts.

     The undesirability of using standardized counts is most obvious when the difference in

association between groups is small.  By comparing the values for � 5 and � 5s, the performance of

the former clearly outpaced that of the latter, especially in the case for HS2R, LS2R, and SS2R,

that is, when the size and strength of association of one group are both higher than the other.  In

these cases, the number of times that one can reject the null hypothesis can be three times larger

when using raw counts as opposed to standardized counts.  The standardization procedure clearly

overcorrects and as a result the risk of committing type II error increases.  Admittedly, the

performance of these nested tests are not high (between 43 and 75 percent) even when raw counts

are used in the analysis.  Nonetheless, their performance is far more superior than any other

alternatives.

     The only condition that standardized counts provide better results is when there is no

difference in association across groups.  Entries in the last four rows consistently show that using

standardized counts yield the lowest number of times that one would reject the “true” null
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hypothesis of no difference in association.  The performance of nested tests based on raw counts

is highly comparable and the risks of committing type I error for most contrasts are acceptable.  In

sum, the above results clearly shows that the standardization procedure is a conservative strategy

and has a biased tendency against group differences in association.  Since the performance of

nested tests based on raw counts perform consistently well in all scenarios, there is no need to

make adjustment for differential group size and one should continue to rely on the conventional

nested chi-squared tests to test for differences.

Suggestions for Modeling Strategies

     The Monte Carlo experiment provides the following important findings that can be used to

inform modeling strategies.  First, there is no impact of sample size (differential group size, in

particular) on our ability to detect group differences when the specified model is true.  Second,

there is no impact in the differential strength of association on our ability to detect group

differences when the specified model is true.  In both cases, the value of the goodness-of-fit

statistic relative to its associated degrees of freedom is always close to 1.  Third, only when

models that depart severely from the true model would one find the influence of sample size and

strength of association on the goodness-of-fit statistics.  In other words, unlike statistical models

in covariance structure analysis, the calculation of goodness-of-fit statistics in independent of

sample size and strength of association, a fact that has been consistently ignored by applied

researchers who tend to focus on misspecified models instead.  An important corollary of this

finding is that using the proportion reduction in L2 or commonly known as the normed fit index

(NFI) in covariance structure analysis to justify a particular non-fitting model is problematic,

especially when the conditional independence model, often expected to be incorrect in the first
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place, is chosen as the baseline model.  In other words, a 96 or 98 proportion reduction in

goodness-of-fit statistics does not guarantee the model under consideration is indeed a good one. 

Fourth, the performance of over-parameterized models rivals that of the true model and therefore

can be used as competing models during the modeling stage.

     In statistical modeling, scientific accuracy and scientific parsimony are both important and they

are not necessarily tradeoffs.  For most practitioners, the major reason why they opt for

correction or adopt other ad hoc strategies is because none of the models fit the data well.  The

Monte Carlo experiment clearly demonstrate that the reason why they do not fit well is not due to

their huge size or underlying association, but rather because the models are “misspecified.”   The

reasons for misspecification are many but the most obvious one, of course, is that the models are

too simple to handle the complex association pattern governing the data.  In other words, we

should work harder to search for more complex models instead.  A number of them are already

widely available in the literature and the list below does not meant to be exhaustive.  The only

caveat is that the choice of these alternative models should not be based on methodological

prowess, but theoretical import and substantive interpretation.  In addition to the models

discussed earlier, other complex models include: (a) hybrid models that combine vertical and non-

vertical effects (Stier and Grusky 1990; Wong 1992); (b) Goodman’s U+RC, R+RC, C+RC

model (Goodman 1986); (d) Goodman’s multidimensional association models for groups, RC(M)-

G models (Becker 1989; Becker and Clogg 1989); (d) log-trili near multidimensional scaled

association models that use either the PARAFAC/CANDECOMP or 3-mode decomposition

method (Wong 2001); and (e) the modified regression-type models (Goodman and Hout 1998,
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2001).  All of them have been successfully applied to tables that yield new and interesting

understanding of the underlying association between tables.

     Two modeling strategies can be adopted.  The first one uses bootstrapping and resampling

techniques and the second one use arbitrary scaling and rescaling methods.  In the case of

bootstrapping or resampling, the following steps can be taken: (a) divide the tables into two or

multiple tables randomly: If the sample size is small, use sampling with replacement to generate

multiple samples; (b) estimate a wide variety of models and use either L2 or L2/df as the criterion

for choosing models to a particular sample; (c) apply the same set of models to other generated

samples: if the same preferred models fit consistently well, they are potential “true” models.  Use

Bayesian or other model selection criteria to guide final selection.  Often times, it is appropriate to

report all competing models so that others can judge whether alternative interpretation is possible.

     The second method uses arbitrary scaling and rescaling methods as the simulation study finds

that any scaling of the size of one group relative to another bears no consequence to the true

model or its over-parameterized counterparts.  The following steps can be taken: (a) assign

arbitrary weights to each table and estimate a wide variety of models and use either L2 or L2/df as

the criterion for choosing models; (b) repeat step (a) by using other arbitrary weights and estimate

the same set of models for at least three or more times; and (c) compare the performance of all

competing models and use Bayesian or other model selection criteria to guide final selection.  All

competing alternative models can be further evaluated by using non-nested models tests

(Weakliem 1992).

     Both strategies require more than one set of model estimations.  This is necessary in order to

avoid the problem of capitalizing on chance and overfitting in a particular situaton.   Note that the
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suggestions assume the existence of sufficient cases for each cell.  Sparse cells can pose a major

problem but the problem may be less severe in certain parameteric models and in some occasions,

their location in the tables may or may not be consequential. 

The Problem of OverDispersion

     The discussion so far ignores the problem of overdispersion, which is extremely common in

survey data.  As McCullagh and Nelder (1989:125) remark, it is generally wise to assume the

presence of overdispersion unless the data or prior information suggest otherwise.  Since the

problem of overdispersion is often related to sampling, it should be corrected before statistical

modeling.  Fitmaurice, Heath, and Cox (1997) and Fitmaurice and Goldthorpe (1997) offer rather

simple solution to this particular problem.  However, once the correction is made, we should

continue to rely on L2, L2/df ratio of 1, and nested chi-squared tests in model comparison and

avoid any further correction on sample size and alike.

Conclusion

     The concern about the impact of unequal sample sizes and underlying strength of association

from different tables in cross-classification analysis is a misplaced one.  Not only that there is no

need to adjust the test statistics through standardization, the procedure may inadvertently create

the problem of underdispersion, thereby giving researchers a false security that the no difference

model actually fits well when group differences occur.  Since differences in group size and

strength of association play no role in the likelihood-ratio test statistics when the specified model

is true, researchers should continue to rely on nominal test statistics and nested chi-squared tests

for group differences.  The use of overparameterized and complex models should also be

encouraged in empirical investigations.  They would provide researchers better alternatives to
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choose rather than relying simple but poorly specified models.  Finally, the two modeling

strategies should be applied routinely in future empirical applications as they would help

researchers to gain confidence that their final models approximate the underlying “true” model.  It

is only when researchers can entertain several (but not one) competing models, then we are likely

to achieve the twin goals of science: accuracy and parsimony.
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Table 1
Simulated Conditions to Study the Effects of Sample Size and
Strength of Association on the Detection of Group Differences

Intrinsic Association (φ)
Huge Difference Large Difference Small Difference No Difference

Sample Size (N) (φ ratio=4) (φ ratio=2) (φ ratio=1.5) (φ ratio=1)

Huge Difference 1, 2 3, 4 5, 6 7
(size ratio=12)
Large Difference 8, 9 10, 11 12, 13 14
(size ratio=6)
Small Difference 15, 16 17, 18 19, 20 21
(size ratio=2)
No Difference 22 23 24 25
(size ratio=1)

Note: 100 simulated tables are constructed for each simulated condition. Entries with two conditions indicate that the
ordering of group size and strength of association may be consequential.



Table 2
Condition 1: Huge Difference in Association, Huge Difference in Group Size

Model Description df L2 p L2
s p

(a) HH1R: N1=1,000, φ1=4.0; N2=12,000, φ2=1.0
1. Conditional Independence Model (CI) 24 693.1 0.00 280.8 0.00
2. Full Two-Way Interaction Model (FI) 12 126.9 0.00 82.7 0.00
3. Log-Linear Layer Effect Model (LL1) 11 13.7 0.89 8.9 0.99
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.6 0.96 2.6 1.00
5. Homogeneous UA Model (UA1) 23 139.8 0.00 93.3 0.00
6. Heterogeneous UA Model (UA2) 22 28.3 0.77 16.2 1.00
7. Homogeneous RC Model (RC1) 18 133.8 0.00 89.6 0.00
8. Heterogeneous RC Model (RC2) 12 12.4 0.95 7.2 1.00
9. Simple Heterogeneous RC Model (RC3) 17 17.3 0.94 8.2 1.00
10. Homogeneous Topological Model (TOP1) 20 157.4 0.00 102.1 0.00
11. Heterogeneous Topological Model (TOP2) 16 46.3 0.03 24.3 0.69
12. Topological Model with Log-Multiplicative 19 50.0 0.02 25.2 0.76

Layer Effect (TOP3)

(b) HH2R: N1=12,000, φ1=4.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 2796.1 0.00 276.9 0.00
2. Full Two-Way Interaction Model (FI) 12 209.0 0.00 77.0 0.00
3. Log-Linear Layer Effect Model (LL1) 11 12.8 0.84 5.6 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.6 0.95 9.2 0.99
5. Homogeneous UA Model (UA1) 23 247.2 0.00 90.2 0.00
6. Heterogeneous UA Model (UA2) 22 56.1 0.04 14.6 1.00
7. Homogeneous RC Model (RC1) 18 336.8 0.00 84.6 0.00
8. Heterogeneous RC Model (RC2) 12 11.1 0.99 5.9 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.3 0.96 10.5 1.00
10. Homogeneous Topological Model (TOP1) 20 392.4 0.00 98.4 0.00
11. Heterogeneous Topological Model (TOP2) 16 188.7 0.00 23.9 0.74
12. Topological Model with Log-Multiplicative 19 191.7 0.00 26.5 0.77

Layer Effect (TOP3)



Table 3
Condition 2: Huge Difference in Association, Large Difference in Group Size

Model Description df L2 p L2
s p

(a) LH1R: N1=1,000, φ1=4.0; N2=6,000, φ2=1.0
1. Conditional Independence Model (CI) 24 472.3 0.00 276.5 0.00
2. Full Two-Way Interaction Model (FI) 12 115.8 0.00 79.2 0.00
3. Log-Linear Layer Effect Model (LL1) 11 11.9 0.95 8.2 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.1 0.95 3.3 1.00
5. Homogeneous UA Model (UA1) 23 129.1 0.00 89.3 0.00
6. Heterogeneous UA Model (UA2) 22 25.7 0.88 15.2 1.00
7. Homogeneous RC Model (RC1) 18 122.8 0.00 85.2 0.00
8. Heterogeneous RC Model (RC2) 12 11.5 0.96 6.7 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.2 0.97 8.0 1.00
10. Homogeneous Topological Model (TOP1) 20 139.7 0.00 98.1 0.00
11. Heterogeneous Topological Model (TOP2) 16 37.1 0.12 23.8 0.67
12. Topological Model with Log-Multiplicative 19 40.3 0.12 24.8 0.78

Layer Effect (TOP3)

(b) LH2R: N1=6,000, φ 1=4.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 1428.4 0.00 277.5 0.00
2. Full Two-Way Interaction Model (FI) 12 178.2 0.00 78.6 0.00
3. Log-Linear Layer Effect Model (LL1) 11 12.2 0.92 5.8 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.3 0.96 8.9 0.99
5. Homogeneous UA Model (UA1) 23 205.1 0.00 90.4 0.00
6. Heterogeneous UA Model (UA2) 22 38.6 0.35 15.3 1.00
7. Homogeneous RC Model (RC1) 18 195.3 0.00 85.8 0.00
8. Heterogeneous RC Model (RC2) 12 11.9 0.92 6.6 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.6 0.94 10.8 1.00
10. Homogeneous Topological Model (TOP1) 20 275.1 0.00 98.3 0.00
11. Heterogeneous Topological Model (TOP2) 16 101.6 0.00 24.1 0.75
12. Topological Model with Log-Multiplicative 19 104.4 0.00 26.6 0.82

Layer Effect (TOP3)



Table 4
Condition 3: Huge Difference in Association, Small Difference in Group Size

Model Description df L2 p L2
s p

(a) SH1R: N1=1,000, φ1=4.0; N2=2,000, φ2=1.0
1. Conditional Independence Model (CI) 24 322.6 0.00 280.8 0.00
2. Full Two-Way Interaction Model (FI) 12 101.4 0.00 82.6 0.00
3. Log-Linear Layer Effect Model (LL1) 11 11.8 0.95 9.6 0.99
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.9 1.00 6.3 1.00
5. Homogeneous UA Model (UA1) 23 116.1 0.00 95.0 0.00
6. Heterogeneous UA Model (UA2) 22 24.8 0.91 19.1 0.98
7. Homogeneous RC Model (RC1) 18 110.3 0.00 90.3 0.00
8. Heterogeneous RC Model (RC2) 12 11.9 0.97 8.9 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.9 1.00 11.7 1.00
10. Homogeneous Topological Model (TOP1) 20 124.1 0.00 103.6 0.00
11. Heterogeneous Topological Model (TOP2) 16 33.0 0.32 27.5 0.47
12. Topological Model with Log-Multiplicative 19 36.1 0.28 29.2 0.58

Layer Effect (TOP3)

(b) SH2R: N1=2,000, φ1=4.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 519.0 0.00 284.2 0.00
2. Full Two-Way Interaction Model (FI) 12 120.0 0.00 80.6 0.00
3. Log-Linear Layer Effect Model (LL1) 11 12.5 0.89 8.7 0.99
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.7 0.93 9.8 0.96
5. Homogeneous UA Model (UA1) 23 141.4 0.00 95.2 0.00
6. Heterogeneous UA Model (UA2) 22 29.1 0.71 20.1 0.96
7. Homogeneous RC Model (RC1) 18 133.7 0.00 89.3 0.00
8. Heterogeneous RC Model (RC2) 12 12.0 0.91 8.9 0.98
9. Simple Heterogeneous RC Model (RC3) 17 16.7 0.94 13.4 0.97
10. Homogeneous Topological Model (TOP1) 20 152.3 0.00 102.1 0.00
11. Heterogeneous Topological Model (TOP2) 16 44.7 0.06 26.6 0.56
12. Topological Model with Log-Multiplicative 19 48.2 0.09 29.8 0.52

Layer Effect (TOP3)



Table 5
Condition 4: Huge Difference in Association, No Difference in Group Size

Model Description df L2 p

(a) NH1R: N1=1,000, φ1=4.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 293.6 0.00
2. Full Two-Way Interaction Model (FI) 12 88.7 0.00
3. Log-Linear Layer Effect Model (LL1) 11 12.3 0.88
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.2 0.96
5. Homogeneous UA Model (UA1) 23 105.3 0.00
6. Heterogeneous UA Model (UA2) 22 26.4 0.81
7. Homogeneous RC Model (RC1) 18 105.3 0.00
8. Heterogeneous RC Model (RC2) 12 12.6 0.97
9. Simple Heterogeneous RC Model (RC3) 17 17.5 0.94
10. Homogeneous Topological Model (TOP1) 20 111.5 0.00
11. Heterogeneous Topological Model (TOP2) 16 31.9 0.31
12. Topological Model with Log-Multiplicative 19 34.9 0.37

Layer Effect (TOP3)



Table 6
Condition 5: Large Difference in Association, Huge Difference in Group Size

Model Description df L2 p L2
s p

(a) HL1R: N1=1,000, φ1=2.0; N2=12,000, φ2=1.0
1. Conditional Independence Model (CI) 24 524.2 0.00 120.9 0.00
2. Full Two-Way Interaction Model (FI) 12 28.3 0.20 17.9 0.67
3. Log-Linear Layer Effect Model (LL1) 11 10.9 0.94 6.5 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.5 0.94 3.3 1.00
5. Homogeneous UA Model (UA1) 23 42.0 0.33 23.7 0.92
6. Heterogeneous UA Model (UA2) 22 25.8 0.89 12.9 1.00
7. Homogeneous RC Model (RC1) 18 34.6 0.30 21.1 0.85
8. Heterogeneous RC Model (RC2) 12 12.1 0.93 6.4 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.7 0.97 8.0 1.00
10. Homogeneous Topological Model (TOP1) 20 53.5 0.03 26.1 0.75
11. Heterogeneous Topological Model (TOP2) 16 34.5 0.27 13.4 0.96
12. Topological Model with Log-Multiplicative 19 37.3 0.25 14.3 0.98

Layer Effect (TOP3)

(b) HL2R: N1=12,000, φ 1=2.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 928.6 0.00 122.2 0.00
2. Full Two-Way Interaction Model (FI) 12 38.3 0.06 15.9 0.87
3. Log-Linear Layer Effect Model (LL1) 11 11.5 0.90 5.6 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.1 0.94 8.2 0.99
5. Homogeneous UA Model (UA1) 23 56.9 0.02 23.0 0.96
6. Heterogeneous UA Model (UA2) 22 33.3 0.54 13.1 1.00
7. Homogeneous RC Model (RC1) 18 44.7 0.10 19.7 0.91
8. Heterogeneous RC Model (RC2) 12 12.1 0.93 6.8 0.99
9. Simple Heterogeneous RC Model (RC3) 17 17.0 0.92 10.4 1.00
10. Homogeneous Topological Model (TOP1) 20 91.0 0.00 25.6 0.81
11. Heterogeneous Topological Model (TOP2) 16 62.9 0.00 14.5 0.96
12. Topological Model with Log-Multiplicative 19 65.4 0.00 16.4 0.97

Layer Effect (TOP3)



Table 7
Condition 6: Large Difference in Association, Large Difference in Group Size

Model Description df L2 p L2
s p

(a) LL1R: N1=1,000, φ1=2.0; N2=6,000, φ2=1.0
1. Conditional Independence Model (CI) 24 315.0 0.00 123.1 0.00
2. Full Two-Way Interaction Model (FI) 12 27.5 0.23 18.3 0.75
3. Log-Linear Layer Effect Model (LL1) 11 11.3 0.91 7.2 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.2 0.94 4.4 1.00
5. Homogeneous UA Model (UA1) 23 33.4 0.35 21.6 0.95
6. Heterogeneous UA Model (UA2) 22 24.0 0.89 13.7 1.00
7. Homogeneous RC Model (RC1) 18 33.4 0.30 21.6 0.89
8. Heterogeneous RC Model (RC2) 12 11.9 0.95 6.9 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.9 0.95 8.8 1.00
10. Homogeneous Topological Model (TOP1) 20 44.8 0.08 26.7 0.80
11. Heterogeneous Topological Model (TOP2) 16 27.0 0.53 14.3 0.96
12. Topological Model with Log-Multiplicative 19 29.7 0.57 15.4 0.97

Layer Effect (TOP3)

(b) LL2R: N1=6,000, φ1=2.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 500.1 0.00 124.0 0.00
2. Full Two-Way Interaction Model (FI) 12 34.7 0.07 16.4 0.80
3. Log-Linear Layer Effect Model (LL1) 11 11.1 0.93 5.9 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.8 0.94 8.2 1.00
5. Homogeneous UA Model (UA1) 23 48.7 0.11 23.8 0.94
6. Heterogeneous UA Model (UA2) 22 27.0 0.83 13.7 1.00
7. Homogeneous RC Model (RC1) 18 40.6 0.15 19.8 0.96
8. Heterogeneous RC Model (RC2) 12 11.0 1.00 6.2 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.4 0.98 10.4 1.00
10. Homogeneous Topological Model (TOP1) 20 64.0 0.01 25.2 0.82
11. Heterogeneous Topological Model (TOP2) 16 38.2 0.15 13.3 1.00
12. Topological Model with Log-Multiplicative 19 41.6 0.17 16.0 1.00

Layer Effect (TOP3)



Table 8
Condition 7: Large Difference in Association, Small Difference in Group Size

Model Description df L2 p L2
s p

(a) SL1R: N1=1,000, φ1=2.0; N2=2,000, φ2=1.0
1. Conditional Independence Model (CI) 24 171.1 0.00 129.1 0.00
2. Full Two-Way Interaction Model (FI) 12 26.0 0.35 20.9 0.61
3. Log-Linear Layer Effect Model (LL1) 11 11.3 0.95 8.8 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.8 0.95 6.7 1.00
5. Homogeneous UA Model (UA1) 23 37.4 0.48 29.3 0.75
6. Heterogeneous UA Model (UA2) 22 23.3 0.91 17.7 0.98
7. Homogeneous RC Model (RC1) 18 32.1 0.44 25.5 0.70
8. Heterogeneous RC Model (RC2) 12 11.7 0.97 8.8 0.99
9. Simple Heterogeneous RC Model (RC3) 17 16.9 0.95 12.1 0.99
10. Homogeneous Topological Model (TOP1) 20 39.3 0.27 31.0 0.56
11. Heterogeneous Topological Model (TOP2) 16 22.0 0.74 16.8 0.91
12. Topological Model with Log-Multiplicative 19 25.1 0.73 18.7 0.96

Layer Effect (TOP3)

(b) SL2R: N1=2,000, φ1=2.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 208.2 0.00 127.4 0.00
2. Full Two-Way Interaction Model (FI) 12 29.0 0.21 20.1 0.56
3. Log-Linear Layer Effect Model (LL1) 11 11.1 0.95 8.0 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.8 0.98 9.4 0.99
5. Homogeneous UA Model (UA1) 23 40.3 0.34 28.6 0.82
6. Heterogeneous UA Model (UA2) 22 23.2 0.95 17.0 1.00
7. Homogeneous RC Model (RC1) 18 34.9 0.27 24.5 0.74
8. Heterogeneous RC Model (RC2) 12 11.8 0.95 8.8 0.99
9. Simple Heterogeneous RC Model (RC3) 17 16.5 0.98 12.9 1.00
10. Homogeneous Topological Model (TOP1) 20 44.6 0.08 30.4 0.64
11. Heterogeneous Topological Model (TOP2) 16 24.6 0.62 16.8 0.96
12. Topological Model with Log-Multiplicative 19 27.4 0.69 19.2 0.98

Layer Effect (TOP3)



Table 9
Condition 8: Large Difference in Association, No Difference in Group Size

Model Description df L2 p

(a) NL1R: N1=1,000, φ1=2.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 135.9 0.00
2. Full Two-Way Interaction Model (FI) 12 21.9 0.52
3. Log-Linear Layer Effect Model (LL1) 11 11.5 0.96
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.4 0.91
5. Homogeneous UA Model (UA1) 23 33.3 0.61
6. Heterogeneous UA Model (UA2) 22 23.4 0.92
7. Homogeneous RC Model (RC1) 18 28.4 0.55
8. Heterogeneous RC Model (RC2) 12 12.5 0.94
9. Simple Heterogeneous RC Model (RC3) 17 17.7 0.94
10. Homogeneous Topological Model (TOP1) 20 34.2 0.42
11. Heterogeneous Topological Model (TOP2) 16 21.3 0.77
12. Topological Model with Log-Multiplicative 19 24.2 0.78

Layer Effect (TOP3)



Table 10
Condition 9: Small Difference in Association, Huge Difference in Group Size

Model Description df L2 p L2
s p

(a) HS1R: N1=1,000, φ1=1.5; N2=12,000, φ2=1.0
1. Conditional Independence Model (CI) 24 506.9 0.00 93.3 0.00
2. Full Two-Way Interaction Model (FI) 12 16.7 0.75 10.3 1.00
3. Log-Linear Layer Effect Model (LL1) 11 11.4 0.95 6.9 0.99
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.3 0.95 4.7 1.00
5. Homogeneous UA Model (UA1) 23 31.3 0.70 16.2 1.00
6. Heterogeneous UA Model (UA2) 22 26.6 0.77 13.2 1.00
7. Homogeneous RC Model (RC1) 18 23.0 0.77 13.5 1.00
8. Heterogeneous RC Model (RC2) 12 12.4 0.92 6.7 1.00
9. Simple Heterogeneous RC Model (RC3) 17 17.6 0.92 9.1 1.00
10. Homogeneous Topological Model (TOP1) 20 43.1 0.18 18.1 0.98
11. Heterogeneous Topological Model (TOP2) 16 35.7 0.18 13.3 1.00
12. Topological Model with Log-Multiplicative 19 38.5 0.26 14.6 0.99

Layer Effect (TOP3)

(b) HS2R: N1=12,000, φ1=1.5; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 575.4 0.00 91.2 0.00
2. Full Two-Way Interaction Model (FI) 12 19.3 0.63 8.8 1.00
3. Log-Linear Layer Effect Model (LL1) 11 10.9 0.92 5.5 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.8 0.92 6.9 1.00
5. Homogeneous UA Model (UA1) 23 34.5 0.55 15.3 1.00
6. Heterogeneous UA Model (UA2) 22 27.5 0.85 12.3 1.00
7. Homogeneous RC Model (RC1) 18 24.7 0.72 11.9 1.00
8. Heterogeneous RC Model (RC2) 12 11.1 0.96 6.2 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.1 0.93 9.3 1.00
10. Homogeneous Topological Model (TOP1) 20 53.3 0.06 16.7 0.99
11. Heterogeneous Topological Model (TOP2) 16 42.1 0.11 12.0 0.98
12. Topological Model with Log-Multiplicative 19 45.5 0.12 14.2 0.98

Layer Effect (TOP3)



Table 11
Condition 10: Small Difference in Association, Large Difference in Group Size

Model Description df L2 p L2
s p

(a) LS1R: N1=1,000, φ1=1.5; N2=6,000, φ2=1.0
1. Conditional Independence Model (CI) 24 286.0 0.00 92.9 0.00
2. Full Two-Way Interaction Model (FI) 12 16.0 0.84 10.2 0.99
3. Log-Linear Layer Effect Model (LL1) 11 11.1 0.94 6.9 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.1 0.95 5.1 1.00
5. Homogeneous UA Model (UA1) 23 29.1 0.80 16.6 0.99
6. Heterogeneous UA Model (UA2) 22 24.8 0.87 13.6 0.99
7. Homogeneous RC Model (RC1) 18 22.0 0.87 13.6 0.99
8. Heterogeneous RC Model (RC2) 12 11.7 0.96 6.7 0.99
9. Simple Heterogeneous RC Model (RC3) 17 17.1 0.95 9.4 0.99
10. Homogeneous Topological Model (TOP1) 20 33.2 0.50 17.6 0.97
11. Heterogeneous Topological Model (TOP2) 16 25.9 0.57 12.7 0.98
12. Topological Model with Log-Multiplicative 19 29.0 0.58 14.2 0.98

Layer Effect (TOP3)

(b) LS2R: N1=6,000, φ1=1.5; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 315.6 0.00 92.7 0.00
2. Full Two-Way Interaction Model (FI) 12 18.8 0.65 9.8 1.00
3. Log-Linear Layer Effect Model (LL1) 11 11.8 0.94 6.6 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.7 0.93 8.0 1.00
5. Homogeneous UA Model (UA1) 23 31.7 0.72 16.9 1.00
6. Heterogeneous UA Model (UA2) 22 25.9 0.87 14.2 1.00
7. Homogeneous RC Model (RC1) 18 25.0 0.74 13.3 1.00
8. Heterogeneous RC Model (RC2) 12 12.1 0.96 7.0 1.00
9. Simple Heterogeneous RC Model (RC3) 17 17.8 0.93 10.8 1.00
10. Homogeneous Topological Model (TOP1) 20 40.6 0.21 17.7 1.00
11. Heterogeneous Topological Model (TOP2) 16 31.1 0.34 13.1 0.98
12. Topological Model with Log-Multiplicative 19 34.4 0.35 15.4 0.99

Layer Effect (TOP3)



Table 12
Condition 11: Small Difference in Association, Small Difference in Group Size

Model Description df L2 p L2
s p

(a) SS1R: N1=1,000, φ1=1.5; N2=2,000, φ2=1.0
1. Conditional Independence Model (CI) 24 136.3 0.00 95.2 0.00
2. Full Two-Way Interaction Model (FI) 12 15.8 0.77 12.4 0.94
3. Log-Linear Layer Effect Model (LL1) 11 11.5 0.91 8.9 0.98
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.2 0.95 7.5 1.00
5. Homogeneous UA Model (UA1) 23 27.2 0.85 20.8 0.98
6. Heterogeneous UA Model (UA2) 22 23.5 0.94 17.9 0.99
7. Homogeneous RC Model (RC1) 18 21.7 0.84 16.8 0.97
8. Heterogeneous RC Model (RC2) 12 11.8 0.95 8.9 0.99
9. Simple Heterogeneous RC Model (RC3) 17 17.2 0.92 12.6 1.00
10. Homogeneous Topological Model (TOP1) 20 28.1 0.69 21.4 0.89
11. Heterogeneous Topological Model (TOP2) 16 21.3 0.74 15.9 0.92
12. Topological Model with Log-Multiplicative 19 24.0 0.77 17.8 0.96

Layer Effect (TOP3)

(b) SS2R: N1=2,000, φ1=1.5; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 146.8 0.00 96.7 0.00
2. Full Two-Way Interaction Model (FI) 12 17.6 0.74 12.5 0.96
3. Log-Linear Layer Effect Model (LL1) 11 11.6 0.94 8.5 0.97
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.2 0.94 9.2 0.97
5. Homogeneous UA Model (UA1) 23 29.8 0.75 21.4 0.99
6. Heterogeneous UA Model (UA2) 22 24.5 0.92 17.8 1.00
7. Homogeneous RC Model (RC1) 18 24.3 0.78 17.3 0.95
8. Heterogeneous RC Model (RC2) 12 12.7 0.95 9.3 0.99
9. Simple Heterogeneous RC Model (RC3) 17 18.1 0.95 13.7 0.99
10. Homogeneous Topological Model (TOP1) 20 31.0 0.54 21.6 0.93
11. Heterogeneous Topological Model (TOP2) 16 22.5 0.75 15.7 0.98
12. Topological Model with Log-Multiplicative 19 25.6 0.74 18.2 0.98

Layer Effect (TOP3)



Table 13
Condition 12: Small Difference in Association, No Difference in Group Size

Model Description df L2 p

(a) NS1R: N1=1,000, φ1=1.5; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 102.7 0.00
2. Full Two-Way Interaction Model (FI) 12 15.6 0.82
3. Log-Linear Layer Effect Model (LL1) 11 11.4 0.97
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.1 0.98
5. Homogeneous UA Model (UA1) 23 27.8 0.84
6. Heterogeneous UA Model (UA2) 22 24.3 0.93
7. Homogeneous RC Model (RC1) 18 22.1 0.82
8. Heterogeneous RC Model (RC2) 12 12.2 0.95
9. Simple Heterogeneous RC Model (RC3) 17 17.8 0.97
10. Homogeneous Topological Model (TOP1) 20 27.2 0.75
11. Heterogeneous Topological Model (TOP2) 16 20.6 0.82
12. Topological Model with Log-Multiplicative 19 23.5 0.84

Layer Effect (TOP3)



Table 14
Condition 13: No Difference in Association, Huge Difference in Group Size

Model Description df L2 p L2
s p

(a) HN1R: N1=1,000, φ1=1.0; N2=12,000, φ2=1.0
1. Conditional Independence Model (CI) 24 477.7 0.00 68.6 0.00
2. Full Two-Way Interaction Model (FI) 12 12.4 0.96 7.1 1.00
3. Log-Linear Layer Effect Model (LL1) 11 11.1 0.96 6.3 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.1 0.96 6.0 1.00
5. Homogeneous UA Model (UA1) 23 27.6 0.80 13.4 1.00
6. Heterogeneous UA Model (UA2) 22 26.3 0.83 12.5 1.00
7. Homogeneous RC Model (RC1) 18 18.2 0.96 9.6 1.00
8. Heterogeneous RC Model (RC2) 12 11.2 0.99 6.0 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.9 0.96 10.4 1.00
10. Homogeneous Topological Model (TOP1) 20 35.4 0.37 13.3 1.00
11. Heterogeneous Topological Model (TOP2) 16 31.2 0.33 10.6 1.00
12. Topological Model with Log-Multiplicative 19 34.0 0.35 12.3 1.00

Layer Effect (TOP3)



Table 15
Condition 14: No Difference in Association, Large Difference in Group Size

Model Description df L2 p L2
s p

(a) LN1R: N1=1,000, φ1=1.0; N2=6,000, φ2=1.0
1. Conditional Independence Model (CI) 24 263.7 0.00 70.5 0.00
2. Full Two-Way Interaction Model (FI) 12 10.9 0.97 6.8 1.00
3. Log-Linear Layer Effect Model (LL1) 11 10.1 0.98 6.3 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.0 0.97 5.7 1.00
5. Homogeneous UA Model (UA1) 23 24.2 0.94 13.1 1.00
6. Heterogeneous UA Model (UA2) 22 23.5 0.90 12.6 1.00
7. Homogeneous RC Model (RC1) 18 16.6 0.99 9.8 1.00
8. Heterogeneous RC Model (RC2) 12 10.6 0.99 5.8 1.00
9. Simple Heterogeneous RC Model (RC3) 17 15.8 0.99 9.0 1.00
10. Homogeneous Topological Model (TOP1) 20 27.7 0.60 13.1 1.00
11. Heterogeneous Topological Model (TOP2) 16 24.1 0.61 10.8 1.00
12. Topological Model with Log-Multiplicative 19 26.9 0.61 12.5 1.00

Layer Effect (TOP3)



Table 16
Condition 15: No Difference in Association, Small Difference in Group Size

Model Description df L2 p L2
s p

(a) SN1R: N1=1,000, φ1=1.0; N2=2,000, φ2=1.0
1. Conditional Independence Model (CI) 24 116.7 0.00 73.2 0.00
2. Full Two-Way Interaction Model (FI) 12 11.8 0.94 9.2 1.00
3. Log-Linear Layer Effect Model (LL1) 11 10.7 0.94 8.3 1.00
4. Log-Multiplicative Layer Effect Model (LL2) 11 10.7 0.95 8.2 0.99
5. Homogeneous UA Model (UA1) 23 24.0 0.94 17.7 1.00
6. Heterogeneous UA Model (UA2) 22 22.9 0.93 16.8 1.00
7. Homogeneous RC Model (RC1) 18 18.0 0.94 13.7 1.00
8. Heterogeneous RC Model (RC2) 12 11.6 0.94 8.5 1.00
9. Simple Heterogeneous RC Model (RC3) 17 16.9 0.95 12.9 1.00
10. Homogeneous Topological Model (TOP1) 20 23.2 0.83 16.8 1.00
11. Heterogeneous Topological Model (TOP2) 16 18.9 0.89 13.4 0.99
12. Topological Model with Log-Multiplicative 19 22.1 0.85 15.9 0.99

Layer Effect (TOP3)



Table 17
Condition 16: No Difference in Association, No Difference in Group Size

Model Description df L2 p

(a) NN1R: N1=1,000, φ1=1.0; N2=1,000, φ2=1.0
1. Conditional Independence Model (CI) 24 77.4 0.00
2. Full Two-Way Interaction Model (FI) 12 12.4 0.93
3. Log-Linear Layer Effect Model (LL1) 11 11.3 0.93
4. Log-Multiplicative Layer Effect Model (LL2) 11 11.1 0.91
5. Homogeneous UA Model (UA1) 23 23.6 0.95
6. Heterogeneous UA Model (UA2) 22 22.5 0.95
7. Homogeneous RC Model (RC1) 18 18.0 0.93
8. Heterogeneous RC Model (RC2) 12 11.3 0.96
9. Simple Heterogeneous RC Model (RC3) 17 16.7 0.93
10. Homogeneous Topological Model (TOP1) 20 22.2 0.91
11. Heterogeneous Topological Model (TOP2) 16 18.1 0.89
12. Topological Model with Log-Multiplicative 19 21.0 0.92

Layer Effect (TOP3)



Table 18
Summary of the Usefulness of Chi-Square Difference Test to Detect Group Differences

∆1 ∆1s ∆2 ∆2s ∆3 ∆3s ∆4 ∆4s ∆5 ∆5s ∆6 ∆6s ∆7 ∆7s

HH1R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
HH2R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
LH1R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
LH2R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SH1R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
SH2R 100 100 100 100 100 100 100 100 100 100 100 100 100 100
NH1R 100 --- 100 --- 100 --- 100 --- 100 --- 100 --- 100 ---
HL1R 97 92 96 96 94 89 84 61 96 95 84 67 95 92
HL2R 100 98 100 86 100 97 97 52 100 92 98 65 100 96
LL1R 99 95 97 100 100 95 88 62 99 99 88 71 95 94
LL2R 100 87 100 87 100 96 97 54 100 95 99 67 100 96
SL1R 95 93 94 96 94 93 79 68 96 96 86 80 94 93
SL2R 99 96 98 96 98 95 89 65 99 95 91 77 99 95
NL1R 89 --- 86 --- 87 --- 65 --- 89 --- 66 --- 83 ---
HS1R 55 39 54 63 51 35 30 8 54 51 30 5 49 37
HS2R 76 35 77 14 68 25 44 3 75 23 54 5 74 16
LS1R 47 30 56 62 42 32 26 9 51 47 29 8 44 38
LS2R 74 30 72 13 66 24 43 4 74 21 51 5 68 20
SS1R 50 40 54 57 39 26 26 13 49 47 25 12 41 37
SS2R 60 45 63 35 50 44 40 14 63 40 41 16 52 34
NS1R 39 --- 48 --- 32 --- 24 --- 43 --- 15 --- 35 ---
HN1R 10 4 11 7 10 7 11 0 9 4 7 0 9 4
LN1R 2 1 4 4 3 0 8 0 2 1 4 0 2 1
SN1R 7 4 8 6 6 3 11 6 6 5 8 3 7 4
NN1R 7 --- 10 --- 9 --- 7 --- 5 --- 3 --- 9 ---

Note: ∆1=L2 difference between FI & LL1; ∆2=L2 difference between FI & LL2; ∆3=L2 difference between UA1 & UA2;
∆4=L2difference between RC1 & RC2; ∆5=L2 difference between RC1 & RC3; ∆6=L2 difference between TOP1 & TOP2; ∆7=L2

difference between TOP1 & TOP3; and ∆1s, ∆2s, ∆3s, ∆4s, ∆5s, ∆6s, and ∆7s refer to the same L2 difference but with standardization.
See text for details


