A multi-country study of inter-generational educational mobility

Arnaud Chevalier
(Institute for the Study of Social Change, University College Dublin \& London School of Economics)

Kevin Denny
(Institute for the Study of Social Change and Economics Department, University
College Dublin \& Institute for Fiscal Studies, London)

Dorren McMahon ${ }^{1}$
(Marino Institute of Education \& Institute for the Study of Social Change, University College Dublin)

Paper presented at RC28 meeting, University of Tokyo, March 2003

Abstract

This paper analyses intergenerational educational mobility using survey data for twenty countries. We find a number of interesting patterns emerge. Estimating a measure of mobility as movement and an index of mobility as equality of opportunity we that while these two measures are positively correlated the correlation is less than perfect. Examining the link with educational inequality we find evidence which suggests an inverse relationship consistent with egalitarian theory. The relationship between mobility appears to be weak, high returns to education do not depress mobility, as human capital theory would suggest. Mobility appears to be somewhat higher for men whereas equality is much the same for both sexes. There is evidence that mobility as equality of opportunity has risen consistent with modernization theory. The increased penalty between cohorts to having poorly educated parents is consistent with the socialist transformation hypothesis. Estimates of marginal mobility are quite different from average mobility.

[^0]
7 Tables and Figures 2-12

Table 1	Correlation	of the four	indic	
$\mathrm{n}=20$	Bart	Ml	Gini	Cov
Bart	1.0000			
M1	0.3138	1.0000		
Gini	-0.2816	-0.3936	1.0000	
Cov	-0.4662	-0.5820	0.6133	1.0000

Table 2	Tests of rank correlation: Kendall's tau	
	Gini	Cov
Bart	-0.3766	-0.1948
	(0.0153)	(0.2147)
M1	-0.2000	-0.3579
	(0.2300)	(0.0297)

The number in parentheses is the p value of a test for independence under the null.

Table 3 Descriptive Statistics by sex Males

	Obs	Mean	Std. Dev.	Min	Max
Bart	20	. 9305866	.1511479	. 6557019	1.095383
M1	20	. 6877705	. 1015067	. 489484	. 8927329
Gini	20	.164585	. 034248	. 12669	. 27383
Cov	20	. 3651245	. 1119309	. 24068	. 63526

(B) Females

	Obs	Mean	Std. Dev.	Min	Max
Bart	20	. 8999896	.1429455	. 5458524	1.065197
Mlnew	20	. 6715682	. 0799508	. 5361774	. 8882126
gini	20	. 158682	. 0337476	.11496	. 24873
cov	20	. 360218	. 12513	. 21164	. 6961

Table 4 Tests for rank correlations between indices by sex

Males

Gini Cov
Bart -0.0842 0.0316
0.62650 .8711

M1 $\quad-0.0947 \quad-0.4211$
0.58130 .0104

Females

	Gini	Cov
Bart	-0.2526	-0.1474
	0.1273	0.3810
M12	-0.0947	-0.2000
	0.5813	0.2300

The number in parentheses is the p value of a test for independence under the null.

Table 5 Descriptive Statistics by cohort :
Respondents less than 46 years

	Obs	Mean	Std. Dev.	Min	Max
Bart	20	.910367	.1583675	.6176969	1.113651
Ml	20	.7439613	.1014402	.5401903	.9450729
Gini	20	.149516	.0302514	.10501	.21094
Cov \|	20	.4036205	.173401	.20126	.79009

(B) Respondents 46 years or older

| | Obs | Mean | Std. Dev. | Min | Max |
| ---: | :---: | :---: | :---: | :---: | ---: | ---: |
| Bart | 20 | .8853067 | .156903 | .6318393 | 1.081848 |
| Ml | 20 | .5587668 | .094902 | .4024441 | .7572153 |
| Gini | 20 | .216768 | .0654647 | .13376 | .40472 |
| Cov \| | 20 | .5693485 | .2188528 | .30411 | 1.02258 |

Table 6 Correlations of changes in indices between cohorts

	$\Delta \mathrm{Bart}$	$\Delta \mathrm{Ml}$	$\Delta \mathrm{Gini}$	$\Delta \mathrm{Cov}$
Δ Bart	1.0000			
$\Delta \mathrm{Ml}$	0.4252	1.0000		
Δ Gini	0.0738	-0.3490	1.0000	
$\Delta \mathrm{Cov}$	0.1428	-0.1329	0.7339	1.0000

Table 7: Paternal educational effect on the probability of obtaining education level 4 or above - Men

	Dad education missing	Dad Lev 1	Dad Lev 2	Dad Lev 3	Dad Lev 4
Belgium	-0.173	-0.216	-0.155	-0.109	0.004
	-2.04	-2.54	-2.02	-1.39	-0.04
$\begin{gathered} \text { Canada (Eng } \\ \text {) } \end{gathered}$	-0.4	-0.416	-0.389	-0.37	-0.259
	-6.67	-5.61	-6.42	-5.4	-3.53
Canada (Fr)	-0.634	-0.884	-0.47	-0.406	-0.376
	-5.95	-4.56	-4.59	-2.52	-3.39
Chile	-0.149	-0.151	-0.068	-0.005	-0.187
	-3.12	-2.54	-1.35	-0.09	-1.6
Czech	-0.133	-0.125	-0.138	-0.066	-0.021
	-3.35	-3.4	-3.7	-1.88	-0.19
Denmark	-0.259	-0.195	-0.205	-0.172	-0.092
	-3.74	-3.28	-4.1	-3.54	-1.2
Finland	-0.104	-0.198	-0.063	-0.085	-0.064
	-1.55	-2.83	-0.91	-1.34	-0.81
Great	-0.262	-0.207	-0.301	-0.128	-0.071
Britain	-4.91	-3.95	-4.16	-2.03	-0.75
Germany	-0.205	-0.185	-0.506	-0.182	-0.088
	-2.64	-2.17	-5.09	-3.23	-0.66
Hungary.	-0.133	-0.216	-0.148	-0.133	-0.053
	-3.78	-5.27	-3.97	-3.61	-0.36
Ireland	-0.171	-0.293	-0.155	-0.105	-0.11
	-3.5	-3.38	-3.23	-1.89	-1.54
Italy	-0.084	-0.267	-0.068	-0.05	-0.053
	-2.76	-4.89	-2.33	-1.69	-1.02
Netherland s.	-0.174	-0.25	-0.137	-0.102	
	-3.37	-5.7	-3.35	-2.43	
N^{\prime} Ireland	-0.175	-0.243	-0.208	-0.115	-0.111
	-3.13	-3.62	-3.55	-2.25	-1.9
Norway	-0.185	-0.189	-0.211	-0.087	-0.022
	-2.9	-2.29	-4.56	-1.97	-0.33
N Zealand	-0.269	-0.227	-0.219	-0.132	-0.011
	-4.32	-3.64	-3.38	-1.97	-0.14
Poland	-0.103	-0.247	-0.112	-0.075	-0.069
	-3.37	-4.53	-3.65	-2.36	-1.35
Slovenia	-0.154	-0.149	-0.192	-0.147	-0.03
	-4.13	-3.59	-4.1	-3.34	-0.45
Sweden.	-0.189	-0.208	-0.041	-0.039	-0.031
	-2.47	-2.78	-0.47	-0.54	-0.35
Switz. (Fr)	-0.16	-0.274	-0.148	-0.143	-0.016
	-1.21	-3.02	-1.55	-1.66	-0.14
Switz. (G)	-0.173	-0.256	-0.308	-0.292	-0.186
	-1.15	-2.61	-3.53	-3.03	-1.97
USA	-0.445	-0.337	-0.392	-0.294	-0.101
	-6.52	-4.71	-5.66	-4.5	-1.01

Note: Model estimated by probit. The full specification also includes dummies for maternal education, whether child language is the official language of the country, whether currently living in a rural area and a quadratic in age at the time of the survey. The population is reweighted to be nationally representative. Marginal effects are reported in the first line for each country while T-statistics are reported in italic.

Table 8 : Paternal educational effect on the probability of obtaining education level 4 or above - Women

	Dad education missing	Dad Lev 1	Dad Lev 2	Dad Lev 3	Dad Lev 4
Belgium	-0.173	-0.239	-0.127	-0.079	-0.105
	-2.54	-2.95	-1.82	-1.06	-0.97
Canada (Eng)	-0.355	-0.414	-0.251	-0.212	-0.103
	-6.33	-6.96	-4.24	-3.52	-1.25
Canada.(Fr)	-0.24	-0.161	-0.188	-0.148	-0.167
	-2.49	-1.33	-1.9	-1.07	-1.47
Chile	-0.12	-0.207	-0.113	-0.094	-0.045
	-3.63	-4.96	-3.96	-3.1	-0.69
Czech	-0.066	-0.088	-0.087	-0.036	-0.004
	-3.11	-4.43	-4.23	-2.03	-0.1
Denmark.	-0.233	-0.263	-0.265	-0.217	-0.124
	-4.12	-5.64	-5.75	-4.83	-1.68
Finland	-0.138	-0.131	-0.112	-0.002	-0.034
	-2.48	-2.04	-1.97	-0.04	-0.5
Great Britain	-0.172	-0.153	-0.212	-0.006	-0.048
	-4.29	-3.88	-4.05	-0.09	-0.8
Germany .	-0.15	-0.034	-0.341	-0.138	-0.121
	-3.48	-0.2	-5.88	-4.71	-1.06
Hungary	-0.202	-0.258	-0.208	-0.173	-0.097
	-5.39	-5.62	-4.84	-4.21	-1.17
Ireland	-0.113	-0.156	-0.07	-0.024	-0.009
	-2.36	-2.57	-1.5	-0.45	-0.09
Italy	-0.041	-0.173	-0.044	-0.039	-0.049
	-1.57	-4.41	-2.34	-2.15	-1.52
Netherland	-0.153	-0.237	-0.147	-0.102	
	-5.86	-7.74	-5.28	-3.72	
N'Ireland	-0.195	-0.177	-0.164	-0.075	-0.139
	-3.87	-2.76	-2.74	-1.02	-1.95
Norway	-0.233	-0.243	-0.361	-0.237	-0.147
	-5.19	-3.12	-7.57	-5.31	-2.71
New Zealand	-0.257	-0.203	-0.241	-0.143	-0.125
	-6.18	-4.81	-5.14	-3.29	-2.72
Poland	-0.142	-0.247	-0.117	-0.058	-0.105
	-3.92	-3.81	-2.79	-1.23	-1.81
Slovenia	-0.178	-0.234	-0.291	-0.192	-0.122
	-4.2	-5.51	-4.99	-3.56	-2.26
Sweden.	-0.223	-0.24	-0.12	-0.088	-0.13
	-2.74	-3.08	-1.43	-1.2	-1.5
Switz. (Fr)	-0.092	-0.097	-0.072	-0.088	-0.04
	-2.25	-2.44	-1.89	-2.38	-0.94
Switz. (G)	-0.022	-0.045	-0.096	-0.135	-0.057
	-0.29	-0.73	-2.43	-2.87	-1.42
USA	-0.348	-0.298	-0.27	-0.215	-0.001
	-6.41	-5.45	-4.75	-4.33	-0.01

Note: Model estimated by probit. The full specification also includes dummies for maternal education, whether child language is the official language of the country, whether currently living in a rural area and a quadratic in age at the time of the survey. The population is reweighted to be nationally representative. Marginal effects are reported in the first line for each country while T-statistics are reported in italic.

Table 9 : Ranking of Equality of opportunities in Education

	Men		Women		Combined
	Rank 1	Rank 2	Rank 1	Rank 2	rank
Belgium (Fl.)	10	9	8	10	9
Canada. (Eng)	22	22	20	19	22
Canada. (Fr)	23	23	17	23	23
Chile	1	21	11	8	10
Czech	4	1	4	3	1
Denmark	17	16	22	21	20
Finland	6	2	1	5	2
Great Britian	12	15	2	14	11
Germany	18	17	15	16	19
Hungary.	14	4	18	17	14
Ireland	9	9	3	6	5
Italy	3	7	5	7	3
Netherlands	8	6	13	9	7
North' Ireland	11	12	7	13	11
Norway	7	13	23	22	18
N Zealand	13	14	16	15	17
Poland.	5	5	6	12	6
Slovenia.	16	11	19	18	15
Sweden.	2	3	9	11	4
Switz. (Fr)	15	8	9	4	7
Switz. (G)	20	19	14	1	15
USA					
Rank Correlation,	21	18	21	20	21
Pr(independent)		0.0001		0.0007	

Note: Rank 1 is based on the estimate of the penalty associated with having a father with secondary education rather than the highest level of education. Rank 2 is based on the paternal educational level associated with a reduction of 15 percentage points in the probability of getting college education. Draws are separated by the estimate associated with this paternal level of education. The probability of independence of the two distributions of rank is calculated using the Kendall score.

Figure 2 Eigen value index against Gini coefficient of schooling

Figure 3 Bartholomew Index against Gini coefficient of schooling

Figure 4 Estimated Return to schooling against Eigen value index (MI) : Males Males Lowess smoother, bandwidth=0.8

Figure 5 Estimated Return to schooling against Eigen value index (MI) : Females

Figure 6 Estimated returns to schooling against Bartholomew index : Males

Figure 7 Estimated returns to schooling against Bartholomew index : Females

Figure 8

Changes in Eigen value index (MI) between cohorts
 USA Netherl Sweden GBritain Belgium Norway Czech Finland Chile Swiss

Figure 9
Changes in Bartholomew index (Bart) between cohorts

-. 5 Germany Ireland Poland NewZealNIreland Italy SloveniaDenmarkHungary Canada USA Netherl Sweden GBritain Belgium Norway Czech Finland Chile Swiss

Figure 10 Changes in Eigen vale index (MI) against initial level

Figure 11 Non parametric densities of Eigen value index, young \& old \triangle younger cohort

Figure 12 Non parametric densities of Bartholomew index, young \& old

Figure 13: Proportion of individuals with education at level 4 or above

Figure 14: Penalty in having a father with secondary education relative to university in the probability of obtaining more than secondary education

\square Old cohort Dad edu $3 \square$ Young cohort Dad edu 3

Figure 15: Evolution in proportion with tertiary education and paternal effect
Running mean smoother, bandwidth $=.4$

[^0]: ${ }^{1}$ Corresponding author: Dr Dorren McMahon ,Marino Institute of Education, Griffith Avenue, Dublin
 9. Ireland. email: Dorren@mie.ie . tel: +353 1 8057765. Our thanks to Statistics Canada who provided the data. The opinions expressed in this paper are those of the authors and not Statistics Canada nor the OECD who coordinated the collection of the data.

