The Welfare Effects of Third-Degree Price Discrimination in a Differentiated Oligopoly

Takanori AdachiNoriaki MatsushimaSchool of EconomicsISERNagoya UniversityOsaka University

November 17, 2010

Examples of 3rd-Degree PD (final products):

- Movie Tickets (discounts to students, senior citizens)
- Pharmaceutical Products (in the international market)
- Computer Software ("academic discounts")

Oligopolistic Competition

.

- Price Discrimination Price Control
- One Source: (Horizontal) Product Differentiation

■ Research Question:

- Welfare Consequences of 3rd-Degree PD
- Social Welfare under PD > Social Welfare under UP (Uniform Pricing)?
- Under Oligopolistic Competition
- Horizontal Product Differentiation

■ Main Results:

• PD can improve SW (especially) if firms' brands

are *substitutes* in the "*strong*" market, and are *complements* in the "*weak*" market,

but it never improves vice versa.

- Consumer surplus never improves by PD.
- "Prisoners' Dilemma" may arise if $\Delta Q < 0$ (conjecture)
- Competition due to strong substitutability
 → Bad for PD to improve SW

Road Map

- **2.** Related Literature
- **3.** Model
- **4.** Welfare Analysis

2. Related Literature

Can 3rd-Degree PD Improve Social Welfare?

• In the case of Monopoly, well understood:

- SW *never improves* if it doesn't increase aggregate output. (Robinson ('33),..., Schmalensee ('81), Varian ('85)

(inefficiency from interconsumer misallocations should be offset)

- SW may improve even if it doesn't increase aggregate output in the presence of consumption externalities. (Adachi ('02, '05))

• As Stole ('08, Handbook of IO) points out, less is known in the case of

<u>Oligopoly</u>,....

2. Related Literature

Oligopoly

 \cdot Holmes ('89, AER)

Symmetry

Decomposition of Equilibrium Price Elasticities

 \cdot Corts ('98, RAND)

Asymmetry

Unambiguous cases of welfare improvement

· Dastidar ('06, Manchester)

Symmetry

Not necessarily $\Delta Q = 0$ even in the case of linear demands

2. Related Literature

■ Potential Sources in Efficiency

- 1. Aggregate output over all markets is too low if prices exceed marginal cost.
- 2. For a given level of aggregate output, PD typically generates interconsumer misallocations relative to uniform pricing.
 - \rightarrow Aggregate output is not efficiently distributed to the highest-value ends.
- \cdot 3. Additional interconsumer misallocations caused by strategic interaction
- Our model allows a simple and natural result on 3.

Road Map

2. Related Literature

3. Model

3. Model

- Price-setting firms (not Qunatity-setting)
- Categorize:

 $\begin{cases} \text{"Strong" markets: } \{m | p^u < p_m\} \\ \text{"Weak" markets: } \{m | p^u > p_m\} \end{cases}$

- Restrict attention to the symmetric case:
 All firm agree in their ranking of strong markets & weak markets.
- Assume further symmetry across firms: Everything is symmetric across firms...

3. Model

Product Differentiation

- (Chamberlin-Robinson approach)
- Representative Consumer's Utility:

$$U_m(q_m^A, q_m^B) \equiv \alpha_m \cdot (q_m^A + q_m^B) -\frac{1}{2} \left(\beta_m [q_m^A]^2 + 2\gamma_m q_m^A q_m^B + \beta_m [q_m^B]^2 \right)$$

- Substitutes: $\gamma_m > 0$
- Complements: $\gamma_m < 0$

3. Model

• Demand functions in market m:

$$\begin{cases} q_m^A(p_m^A, p_m^B) = \frac{\alpha_m}{\beta_m + \gamma_m} - \frac{\beta_m}{\beta_m^2 - \gamma_m^2} p_m^A + \frac{\gamma_m}{\beta_m^2 - \gamma_m^2} p_m^B \\ q_m^B(p_m^A, p_m^B) = \frac{\alpha_m}{\beta_m + \gamma_m} + \frac{\gamma_m}{\beta_m^2 - \gamma_m^2} p_m^A - \frac{\beta_m}{\beta_m^2 - \gamma_m^2} p_m^B \end{cases}$$

• Normalization: common constant marginal cost = 0

•
$$\alpha_s / \alpha_w \in (\underline{\alpha_s / \alpha_w}, \alpha_s / \alpha_w)$$

(Relative) size of the weak market should be sufficiently *small* for neither firm to have an incentive to deviate to closing the weak market, and be also sufficiently *large* for the weak market to be open under unifor pricing.

Road Map

2. Related Literature

3. Model

■ Analytical Properties

Proposition 1. Equilibrium differences in social welfare is given by

$$\Delta SW^*(\boldsymbol{\gamma}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = -\sum_{m \in \{s, w\}} \frac{\Delta p_m^*}{\beta_m + \gamma_m} \cdot (p_m^* + p^*)$$

where $\Delta p_m^* \equiv p_m^* + p^*$.

Lemma 1. Equilibrium price elasticity of demand in market m in equilibrium is given by

- Special case of Holmes ('89)
- \bullet Product Differentiation $\tar{\rightarrow}$ Strategic Interaction
- Cross-price elasticity: how much each firm "steals" from the other firm *in equilibrium*.

•
$$\varepsilon_m(p_m^*) \leq 1$$
 if and only if $\gamma_m \geq 0$.

Proposition 2. $\Delta Q^* \leq 0 \Rightarrow \Delta SW^* < 0$.

• Same as Monopoly

•
$$\Delta Q^* \stackrel{\geq}{=} 0 \Leftrightarrow$$
 if and only if $\frac{\gamma_s}{\beta_s} \stackrel{\geq}{=} \frac{\gamma_w}{\beta_w}$.

■ Welfare-improving price discrimination

• Reduce the number of parameters: $\alpha_s = 1 > \alpha_w > 0$ (necessary for social welfare to improve)

• $\Delta SW^* > 0 \Leftrightarrow \Delta q_w^* \cdot (p^* + p_w^*) > \Delta q_s^* \cdot (p^* + p_s^*)$

Case of Symmetric Product Differentiation $(\gamma_s/\beta_s = \gamma_w/\beta_w)$

Proposition 3. In the case of symmetric product differentiation, $\Delta SW^* < 0.$

Case of Asymmetric Product Differentiation $(\gamma_s/\beta_s \neq \gamma_w/\beta_w)$

- (1) γ_m is common: $\gamma \equiv \gamma_s = \gamma_w$
- (2) β_m is common: $\beta \equiv \beta_s = \beta_w$

$$\blacksquare (1) \gamma_m \text{ is common } (\alpha_w = 0.85)$$

	$(\gamma,\beta_s,\beta_w) =$			
	(0.3, 1.0, 0.75)	(0.3, 0.75, 1.0)	(-0.3, 1.0, 0.75)	(-0.3, 0.75, 1.0)
p^*	0.3582	0.3644	0.5235	0.5423
$p_s^*~(\Delta p_s^*/p^*)$	0.4118 (15%)	0.3750 (3%)	0.5652 (8%)	0.5833 (8%)
$p^*_w~(\Delta p^*_w/p^*)$	0.3188 (-11%)	0.3500 (-4%)	0.4958 (-5%)	0.4804 (-11%)
$\Delta q_s^* \; (\Delta q_s^*/q_s^*(p^*))$	-0.9412 (-8%)	-0.0101(-2%)	-0.0596 (-9%)	-0.0912 (-9%)
$\Delta q^*_w ~(\Delta q^*_w/q^*_w(p^*))$	0.0375 (8%)	0.0111 (3%)	0.0615 (8%)	0.0884 (20%)
ΔSW^*	-0.0063	0.0005	-0.0022	-0.0123
ΔCS^*_s	-0.0507	-0.0127	-0.0543	-0.0797
ΔCS_w^*	0.0384	0.0109	0.0419	0.0598
$\Delta \Pi^*$	0.0060	0.0023	0.0102	0.0076
ΔQ^*	-0.0037	0.0009	0.0019	-0.0028

(1)
$$\gamma_m$$
 is common ($\alpha_w = 0.85$)

(2)
$$\beta_m$$
 is common ($\alpha_w = 0.85$ and $\beta = 1.0$)

(2)
$$\beta_m$$
 is common ($\alpha_w = 0.85$ and $\beta = 1.0$)

• Closer to Perfect Substitutes...

(2)
$$\beta_m$$
 is common ($\alpha_w = 0.85$ and $\beta = 1.0$)

	$(\gamma_s, \gamma_w) =$	
	(0.1, -0.1)	(-0.1, 0.1)
<i>p</i> *	0.4588	0.4663
$p_{\sigma}^{*} \left(\Delta p_{\sigma}^{*} / p^{*} \right)$	0.4737 (3%)	0.5238 (12%)
$p^*_w \left(\Delta p^*_w / p^* \right)$	0.4452(-3%)	0.4026 (-14%)
$\Delta q_s^* \left(\Delta q_s^* / q_s^*(p^*) \right)$	-0.0615 (-3%)	-0.0640 (-11%)
$\Delta q_w^* \; (\Delta q_w^* / q_w^* (p^*))$	0.0150 (3%)	0.0578 (17%)
ΔSW^*	0.0009	-0.0131
ΔCS_{o}^{*}	-0.0145	-0.0646
ΔCS_w^*	0.0120	0.0481
$\Delta \Pi^*$	0.0034	0.0034
ΔQ^*	0.0014	-0.0061

5. Summary

• PD can improve SW (especially) if firms' brands

are *substitutes* in the "*strong*" market, and are *complements* in the "*weak*" market,

but it never improves vice versa.

- Consumer surplus never improves by PD.
- "Prisoners' Dilemma" may arise if $\Delta Q < 0$ (conjecture)
- Competition due to strong substitutability
 → Bad for PD to improve SW

(Intentionally Blank)

■ What is Price Discrimination?

• *Price Discrimination* is present when two or more identical units of the same products or services are sold at *different* prices, either to the same buyer or to different buyers. (Adachi ('07, Encyclopedia))

• It's a marketing technique for a seller to generate higher profits (by extracting some of the consumer surplus).

■ What is Price Discrimination? (cont'd)

- Taxonomy (Pigou ('20); Dupuit (1849) & Tirole ('89))
 - 1st-Degree PD: Each consumer pays her WTP
 - 2nd-Degree PD: Each consumer self-selects into a different price schedule
 - 3rd-Degree PD: Consumers are segmented into groups by unambiguous traits
- This talk concentrates on 3rd-Degree PD.

Two conditions for PD to be introduced

- Imperfect competition (firms must have some control power over the price)
- No arbitrage (no immediate resale among consumers)

Methodological Issues

- Evaluation Criteria:
 - Alfred Marshall's Concept of Surplus
 - Social Welfare = Profit (of firms) + Surplus (of consumers)
- Restrict Attention:
 - Theoretical Analysis
 - Partial Equilibrium Analysis (small income effects)
 - No Uncertainty, No Asymmetric Information
 - Final Products
 - Static Analysis
 - No Enty, No Exit