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Abstract 

In this paper, we study an individual who faces a three-period decision problem when she accepts 

the partitional signal twice at the different times. Adding a new axiom to a Third-Order Belief 

Representation in Takeoka (2007), we characterize a Two-Stage-Partitional Representation, which 

make the property of signals more flexible. And, under the context of a Two-Stage-Partitional 

Representation, we show the subjective version of Dynamic Consistency among two different 

preference relations over menus. 
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1   Introduction 

1.1 Background 

In our dairy decisions, probabilities are not given while in von Neumann-Morgenstern Expected 

Utility Theorem, probabilities are given. This implies assuming that probabilities are taken as 

primitives is restrictive. Instead, it is realistic for a Decision Maker (henceforth DM) not to choose her 

probability but to choose her action. 

Since the consequence of her action is uncertain, we consider a state space to model the uncertainty. 

Subjective probability models assuming that a state space is taken as a primitive are introduced by 

Savege (1954) and Anscombe-Aumann (1963). In their models, however, their assumptions are 

restrictive because assuming that a state space is taken as a primitive means that an observer knows 

all the uncertainties she faces. Therefore, a state space should not be taken as a primitive and it should 

be derived in the model. 

The derivation of a subjective state space is studied by Kreps (1979). He considers preference over 

menus of alternatives to derive the subjective state space. If the DM knows that she has the 

uncertainties regarding her future preference over alternatives, her ranking of menus reflects how she 

perceives the future uncertainties. From the ranking of menus, Kreps derives the set of future 

preferences - the set of possible ex post preferences, which is called the subjective state space. 

However, the subjective state space is not decided uniquely in Kreps. This problem is solved in Dekel, 

Lipman and Rustichini (2001, henceforth DLR). DLR refines Kreps by enriching the choice object to 

menus of lotteries over alternatives. In both Kreps and DLR, an observer can identify all the 

uncertainties she perceives by the derivation of a subjective state space but an observer can’t identify 

how the DM expects uncertainties to be resolved as time goes on. 

Takeoka (2007) derives the subjective state space and the filtration in a dynamic setting without 

taking them as primitives by considering preference over menus of menus of Anscombe-Aumann acts. 

Moreover, Takeoka identifies the subjective probability measure on the subjective state space which 

is not identified even in DLR because the state-independence of risk preference is applied in Takeoka, 

but the state-dependence of risk preference is applied in DLR.  

On the other hand, under the menu setting, Dekel, Lipman, Rustichini and Sarver (2007) and Dekel 

et al. (2009) develop DLR. Also Kochov (2007), Ergin and Sarver (2010), Higashi and Hyogo (2012) 

study the extension of DLR by weakening DLR’s assumptions of Completeness, Independence and 

Continuity, respectively. Furthermore, Ahn and Sarver (2013) discusses the unforeseen contingencies. 

In the dynamic setting, Krishna and Sadowski (2014) shows Dynamic Preference for Flexibility 

Representation by introducing a Markov Process on states of the world.     

Our paper is located on an extension of these papers which deal with the subjective state space. 
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1.2 Motivation and Goal 

 Riella (2013) studies the appropriate version of Dynamic Consistency when the state space is 

subjective. It’s natural for rational agents to follow the property of Dynamic Consistency when the 

state space is exogenous, while it’s not easy to find whether it satisfies the property of Dynamic 

Consistency when the state space is endogenous because an observer doesn’t know the state space the 

DM faces. In Riella, the domain is the same as DLR, which is menus of lotteries over alternatives, and 

a different setting from DLR is that an objective state signal is sent to a DM before choosing a menu.  

 In this paper, we pursue the subjective version of Dynamic Consistency using the framework of 

Takeoka, which is a three-period decision problem that the DM accepts the belief signal twice at the 

different times. In order to achieve our goal, we show a Two-Stage-Partitional Representation different 

from Takeoka, in which the subjective signals are based on her belief so we can’t apply Riella’s method 

directly. Therefore, we change the subjective belief signals to the subjective partitional signals to build 

a new representation. It enables us to consider the subjective version of Dynamic Consistency. Riella 

shows the subjective version of Dynamic Consistency by using the Flexibility Consistency when the 

subjective state is finite and a state signal the DM faces is specific. On the other hand, we show2 the 

subjective version of Dynamic Consistency when the subjective state is finite and each signal the DM 

faces is partition. Moreover, Riella focus on lotteries but ours on acts. 

Our contributions are the followings. First of all, adding a new axiom to a Third-Order Belief 

Representation in Takeoka, we characterize a Two-Stage-Partitional Representation, which is more 

flexible (I explain it in section 3.4). Next, we show the subjective version of Dynamic Consistency 

among two different preference relations over menus using a Two-Stage-Partitional Representation. 

 

1.3 Related Literature and Outline  

  As related literatures, we should explain Dillenberger, Lleras, Sadowski and Takeoka (2014, 

henceforth DLST) and Dillenberger and Sadowski (2014, henceforth DS). 

 In DLST, they work in a setup of menus of Anscombe-Aumann acts and send a subjective signal to 

a DM at the point between choosing a menu and choosing an act. As a result, they represent Subjective 

Learning Representation and Partition Learning Representation. Also in DLST, the information 

structure is identified uniquely. In DS, they state Generalized-Partition Representation using DLST 

framework and consider the subjective version of Dynamic Consistency. DS is probably the closest 

paper to mine. However, compared to our model, the domain and the number of accepting signals are 

different. In this sense, our paper is absolutely different from two papers above. 

 The remaining of the paper is organized as follows. In section 2, we summarize Takeoka and set some 

axioms required later. In section 3, we add a new axiom and state the theorem of a Two-Stage-

Partitional Representation. In section 4, we consider the subjective version of Dynamic Consistency 

                                                   
2 We have to put a strong assumption. I explain it in section 4 
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under the context of a Two-Stage-Partitional Representation. In section 5, we state the conclusion and 

discuss the future work.  

 

2   Preliminaries 

As an extension of the previous literature mentioned above, our model is based on Takeoka. In our 

model, the domain, primitives and periods of decisions are almost all the same as Takeoka but the 

property of signals is different, which leads to totally different results. In detail, different from Takeoka 

which uses the subjective belief signal, we use the subjective partitional signal in our model. In this 

section, we provide an overview of Takeoka.3 

 

2.1 Domain and Timing 

 Let Ω be a finite objective state space (a DM may have some subjective states other than Ω). Also 

let Z be a non-empty finite set of outcomes and Δ(Z) be the set of all Borel probability measures over 

Z, which is a compact metric space under the weak metric convergence topology. Furthermore, he 

calls ℎ: Ω → Δ(Z) an act and ℍ = {ℎ│Ω → Δ(Z)} the set of all acts, which is a compact metric space 

under the product topology.  

 Let K(ℍ) be the set of all non-empty compact subsets of ℍ. He calls K(ℍ) with Hausdorff metric 

menus of acts. Also let K(K(ℍ)) be the set of all non-empty compact subsets of K(ℍ) with Hausdorff 

metric. He also calls K(K(ℍ)) menus of menus of acts. Consider preference ≿ over K(K(ℍ)). 

 The DM has in mind the following timing of decisions. In period 0, the DM chooses a menu of menus 

of acts  𝑥0 ∈ K(K(ℍ)); in period 1−, she receives a subjective belief signal 𝑆1; in period 1, she 

chooses a menu of acts 𝑥1 ∈ 𝑥0; in period 2−, she receives a subjective belief signal 𝑆2; in period 2, 

she chooses an act ℎ ∈ 𝑥1; in period 2+, a state is realized and she receives the lottery. We focus on 

the dynamic situation in three stage decision making. 

 

 2.2 Axioms  

 We turn to the axiomatic foundation of the model. Takeoka considers the following axioms for a 

binary relation ≿. 

 

Axiom 1 (Order). ≿ is complete and transitive. 

 

Axiom 2 (Continuity). For all 𝑥0  ∈ K(K(ℍ)),  

                                                   
3 Takeoka defines a decision tree, which is a pair consisting of a state space and a filtration. 

Depending on the DM’s exhibiting Preference for Flexibility, we can have a variety of subjective 

decision trees. However, in our paper, we focus on the DM who exhibits Preference for Flexibility in 

every periods. 
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{𝑧0 ∈ K(K(ℍ))| 𝑥0 ≿ 𝑧0} and {𝑧0 ∈ K(K(ℍ))| 𝑧0 ≿ 𝑥0} are closed 

 

Axiom 3 (Strong Non-degeneracy). There exists l, l’ ∈ Δ(Z) such that {{l}} ≻ {{l’}}  

 

Axiom 4 (Independence). For all   𝑥0, 𝑦0, 𝑧0 ∈ K(K(ℍ)) and for all λ ∈ (0, 1] 

𝑥0 ≻ 𝑦0 ⇒ λ 𝑥0+ (1−λ) 𝑧0 ≻ λ 𝑦0 + (1−λ) 𝑧0 

 

Axiom 5 (Monotonicity). For all 𝑥0, 𝑥′0 ∈ K(K(ℍ)), 

𝑥0 ⊂ 𝑥′0 ⇒ 𝑥′0 ≿ 𝑥0 

 

Axiom 6 (Aversion to Commitment). For all 𝑥′0  ∈ K(K(ℍ)) and for all finite 𝑥0 ∈ K(K(ℍ)), 

𝑥′0⋃ {⋃ 𝑥1𝑥1 ∈ 𝑥0
} ≿ 𝑥′0⋃ 𝑥0 

 

Axiom 7 (Risk Preference Certainty).  

For all 𝑥0 ∈ K(K(ℍ)), 𝑥0 ~ ο(𝑥0) 

For any ℎ ∈ ℍ, ο1(ℎ) ≝ {ℎ’ ∈ ℍ |{{ℎ(ω)}} ≿ {{ℎ’(ω)}} for all ω}, for each 𝑥1 ∈ K(ℍ), ο1(𝑥1) ≝ 

⋃ ο1(h)h∈𝑥1
, and for each 𝑥0  ∈ K(K(ℍ)), ο(𝑥0) ≝ {ο1(𝑥1) | 𝑥1 ∈ 𝑥0}. 

 

 The first five axioms are standard. The sixth axiom, Aversion to Commitment, means that the DM 

weakly wants to delay her decision. And the seventh axiom, Risk Preference Certainty, means that she 

totally knows the ranking over lotteries.  

 

2.3 Representation 

Take any third-order belief 𝜇0 ∈ Δ(Δ(Δ(Ω))) and non-constant continuous mixture linear function 

𝑢 : Δ(Z) →ℝ. Define the functional form 𝑈0: K(K(ℍ)) →ℝ. 

 

𝑈0( 𝑥0) = ∫ max
𝑥1∈𝑥0

𝑈1(𝑥1, 𝜇)
𝛥(𝛥(Ω))

d𝜇0(𝜇)  where 

𝑈1(𝑥1, 𝜇) = ∫ max
ℎ∈𝑥1

𝑈2(ℎ, 𝑝)
𝛥(Ω)

dμ(𝑝)  for 𝜇 ∈ Δ(Δ(Ω))  and 

𝑈2(ℎ, 𝑝) = ∑ 𝑢(ℎ(𝜔))𝑝(𝜔)𝜔∈Ω   for p ∈ Δ(Ω) 

 

𝜇0 ∈ Δ(Δ(Δ(Ω))) means her belief about the first signal (𝑆1) so that 𝜇 ∈ Δ(Δ(Ω)) is regarded as the 

first signal (𝑆1). Also the history of signals (𝑆1, 𝑆2) in the time line is denoted by p ∈ Δ(Ω). We 

should pay attention to applicants before the first signal (𝑆1) denoted by 𝜇1 ∈ Δ(Δ(Ω)), and the 

belief on Ω just after the first signal (𝑆1) denoted by π ∈ Δ(Ω) in order to smoothly progress our 
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discussion in section 3 although they’re not written above. 

 

Definition 1. Preference ≿ on K(K(ℍ)) admits a Third-Order Belief Representation if there exists 

a functional form above that represents ≿. 

 

Theorem 1.4 Preference ≿ satisfies Axioms 1–7 if and only if it admits a Third-Order Belief 

Representation. 

 

3   Model 

In this section, we provide the model setting and characterize a Two-Stage-Partitional Representation. 

As mentioned above, the domain and primitives are quite similar to Takeoka but the timing of 

decisions are different, which leads to totally different representation.  

 

3.1 Setup 

 The DM has in mind the following timing of decisions: 

 In period 0, she chooses a menu of menus of acts  𝑥0 ∈ K(K(ℍ)). 

 In period 1−, she receives the first partition on Ω: ρ
1
. 

In period 1, she chooses a menu of acts 𝑥1 ∈  𝑥0. 

In period 2−, she receives the second partition on Ω: ρ
2
. 

In period 2, she chooses an act ℎ ∈ 𝑥1. 

In period 2+, a state is realized and she receives the lottery. 

 

 The only change towards Takeoka is the property of signals. Takeoka uses the subjective belief signal 

such as 𝑆1 and 𝑆2. In our model, however, we use the subjective partitional signal say, ρ
1
 and ρ

2
. 

 

3.2 Axioms 

 We turn to the axiomatic foundation in our model. Takeoka considers the seven axioms above for a 

binary relation ≿ and we add a new axiom to Takeoka in order to characterize a functional form in the 

timing of decisions above. Before explaining a new axiom, we should introduce the concept of a 

composite act. 

 

Definition 2. A composite act f 𝐼g is defined as follows. For any event 𝐼 ∈ 2Ω, and acts f, g ∈ ℍ, 

                                                   
4 In addition, Takeoka states on the uniqueness of the representation (𝜇0,𝑢) and it also pins down the 

uniqueness of probability measure.  
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f 𝐼g(𝜔) = [
𝑓(𝜔) if 𝜔 ∈ 𝐼

g(𝜔) if 𝜔 ∉ 𝐼
] 

 

Axiom 85 (Indifference to State Contingent Commitment on Menus of Menus of Acts) 

For all f, g ∈ ℍ, there exists 𝐼 ∈ 2Ω, such that {{f 𝐼g}}~{{f, g}} 

 

 Since {{f 𝐼g}} means a commitment menu of menus of acts and {{f, g}} is the most flexible menu 

of menus of acts, this axiom means that the DM is indifferent between committing to the composite 

act, which she decides ex ante, and choosing one of two acts, which she decides ex post. 

 

3.3 Two-Stage-Partitional Representation 

 Take any probability measure θ1 on Δ(Ω) and non-constant continuous mixture linear function   𝑢 : 

Δ(Z) →ℝ. Consider the functional form 𝑉0: K(K(ℍ)) →ℝ. 

 

  𝑉0(𝑥0) = ∑ max
𝑥1∈𝑥0

𝑉1(𝑥1, 𝐼1)θ1𝐼1∈ ρ1
(𝐼1)  where 

  𝑉1(𝑥1, 𝐼1) = ∑ max
h∈𝑥1

𝑉2(ℎ, 𝐼2)𝐼2∈ ρ2
θ1(𝐼2)   

 𝑉2(ℎ, 𝐼2) = ∑ 𝑢(ℎ(ω))𝜔∈𝐼2
θ1(𝜔 | 𝐼2)   

 

θ1 ∈ Δ(Ω) is an initial belief on Ω and ρ
1

 is the first subjective partitional signal and 𝐼1 are partitions 

which include each state space divided Ω into ρ
1
. Similarly, ρ

2
 is the second subjective partitional 

signal given the first partitional signal and 𝐼2 are partitions which include each state space divided Ω 

into ρ
2
. 

 

Definition 3. Preference ≿ on K(K(ℍ)) admits a Two-Stage-Partitional Representation if there exists 

a functional form above that represents ≿. 

 

Theorem 2. Preference ≿ satisfies Axioms 1–8 if and only if it admits a Two-Stage-Partitional 

Representation. 

 

Proof of Theorem 2 

An idea in DLST can be applied here to prove Theorem 2. Necessity of the axioms is obvious. 

Therefore, we show sufficiency. 

                                                   
5 As a development of the axiom used in DLST, this axiom is mentioned. 
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Proof.  

What to be shown is that “signals in Third-Order Belief Representation are partition.” ⇔ “σ(π) ∩

 σ(π’) = Ø for all π with π ≠ π’.”6 The right direction part is obvious. Then we show the left direction 

part. 

 Take U0 a Third-Order Belief Representation. Now, assume that there exist π and π’ such that π ≠ π’ 

and σ(π)  ∩ σ(π’)  ≠ Ø. In addition, 𝜔∗ ∈ σ(π)  ∩ σ(π’). Then, there exist acts f and g such that 

∑ 𝑓(𝜔)𝜋(𝜔)𝜔  > ∑ g(𝜔)𝜋(𝜔)𝜔  and ∑ 𝑓(𝜔)𝜋′(𝜔)𝜔  < ∑ g(𝜔)𝜋′(𝜔)𝜔 . Take ɛ > 0 sufficiently 

small. Define 𝑔ɛ(𝜔) as follows: 

gɛ(𝜔) = {
g(𝜔∗) +  ɛ     if   𝜔 =  𝜔∗ 

g(𝜔)               if   𝜔 ≠  𝜔∗  

Consider a menu of menus of acts {{f,gɛ}}. It is possible to choose gɛ  from {{f, gɛ }} because 

∑ 𝑓(𝜔)𝜋′(𝜔)𝜔  < ∑ g(ω)𝜋′(𝜔)ω .  

Therefore, U0({{f, gɛ}}) ≠  U0({{f, g}}) and U0({{f, gɛ}}) → U0({{f, g}}) as ɛ → 0.  

What’s important is that f 𝐼gɛ(𝜔∗) ≠ f (𝜔∗) when {{f 𝐼gɛ}}~{{f, 𝑔ɛ}} holds.  

Fix ɛ arbitrary and take δ > 0 sufficiently small. Define 𝑓δ(𝜔) as follows: 

𝑓δ(𝜔) = {
𝑓(𝜔∗) + δ      if   𝜔 =  𝜔∗ 

𝑓(𝜔)               if   𝜔 ≠  𝜔∗  

Similarly, consider a menu of menus of acts {{𝑓δ, gɛ}}. It is possible to choose 𝑓δ from {{𝑓δ, gɛ}} 

because ∑ 𝑓δ(𝜔)𝜋(𝜔)𝜔  > ∑ gɛ(𝜔)𝜋(𝜔)𝜔 .  

Therefore, U0({{𝑓δ, gɛ}}) ≠ U0({{f, gɛ}}) and U0({{𝑓δ, gɛ}}) → U0({{f, gɛ}}) as δ → 0.  

Also there exists I’ such that {{𝑓δ 𝐼′gɛ}} ~ {{𝑓δ, gɛ}}. As a result,  

𝑓δ 𝐼′gɛ(𝜔∗) = 𝑓δ(𝜔∗) = 𝑓(𝜔∗) + δ. 

As the sequence {{𝑓δ 𝐼′gɛ}}δ → 0 is in the compact set K(K(ℍ)), it converges to a point h in the 

compact set. The discussion above leads to the following: 

h(𝜔∗) = 𝑓(𝜔∗) + 0 = 𝑓(𝜔∗) 

and 

h(ω) ∈{{f (𝜔), gɛ(𝜔)}} 

Thus, under an event 𝐼 ⊂ Ω, 

h = f 𝐼gɛ 

Therefore,  

{{ f 𝐼gɛ}} = {{h}}~{{f, gɛ}} 

 

These results contradict with the idea that f 𝐼gɛ(𝜔∗) ≠ f (ω∗) when {{f 𝐼gɛ}} ~ {{f, gɛ}} holds. ■ 

                                                   
6 σ is a support of π, that is, σ(π) ⊂ Ω and π ∈ Δ(Ω) is defined as the belief on Ω just after the first 

signal 𝜇 ∈ Δ(Δ(Ω)). 
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A Two-Stage-Partitional Representation is better to a Third-Order Belief Representation in two 

ways. First, a Two-Stage-Partitional Representation captures a reality in the world much more than a 

Third-Order Belief Representation. Next, we can consider the subjective version of Dynamic 

Consistency using a Two-Stage-Partitional Representation. We discuss the first point with examples 

in the next, while we consider the second point in section 4. 

 

3.4 Examples of two Representations 

 The difference of the property between the belief signals and the partitional signals is caused by 

different sources of information. Let’s consider the DM who will buy an asset in a three-period 

decision game. She chooses a menu of menus today, and she will accept the first subjective signal 

and chose a menu tomorrow, and she will accept the second subjective signal and chose an act the 

day after tomorrow. 

At first, we ponder over a Third-Order Belief Representation. Note that the information she accepts 

twice at the different timings have to be correlated with each other, so we can think about the first 

and second belief signals as a series of information which is dependent on each other over periods. 

For example, we interpret the first belief signal as an expected value of GDP, and the second belief 

signal as a definitive value of GDP. 

On the other hand, in terms of the partitional signals, it’s not always the case that the information 

she accepts twice at the different timings are correlated with one another, so it is sometimes possible 

that we regard the first and second partitional signals as the information which are independent on 

one another over periods7. For example, we interpret the first partitional signal as an exchange rate, 

and the second partitional signal as a defective value of GDP. 

 

4   Dynamic Consistency 

Riella shows that Flexibility Consistency is equivalent to the subjective version of Dynamic 

Consistency when the subjective state is finite and an objective state signal the DM faces is specific. 

On the other hand, we consider building the proper version of Dynamic Consistency when the 

subjective state is finite and each signal the DM faces is partition. In my setting, we have to put an 

assumption that an observer can observe partitional signals.8Also, in terms of updating, even if some 

states are unforeseen, which means she is aware of new states in the world over time, it can be 

interpreted as a reverse Bayesian updating when the role of preference relation before signals and that 

                                                   
7 Everything is all right even if the information she accepts twice at the different timings are 

correlated with one another. 
8 This is a strong assumption because subjective signals are not identified in this 

paper.  
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after signals are reversed.9 

 

4.1 Setup 

 We work within the setup in our model shown in the section 3. Again, let us put an assumption that 

an observer can observe partitional signals, which means he can observe the each partitional signal. 

However, each partitional signal is interpreted by a DM, so an observer cannot realize how she 

interprets each signal.  

 

Definition 4. The following statements are defined. 

1. Consider preference ≿ over 𝐾(𝐾(ℍ)). Take any θ1, 

𝑉0(x0) = ∑ max
𝑥1∈ 𝑥0

𝑉1(𝑥1, 𝐼1)θ1𝐼1∈ ρ1
(𝐼1) 

(
  𝑉1(𝑥1, 𝐼1)  =  ∑ max

h∈𝑥1

𝑉2(ℎ, 𝐼2)𝐼2∈𝜌2
𝜃1(𝐼2)

 𝑉2(ℎ, 𝐼2)  =  ∑ 𝑢(ℎ(ω))𝜔∈𝐼2
𝜃1(𝜔 | 𝐼2) 

) 

 

2. Consider preference  ≿∗ over K(ℍ). For any two menus of acts α and β in the menu of menus 𝑥0,  

α   ≿∗  𝛽 ⇔ ∑ max
h∈𝛼 

𝑉2(ℎ, 𝐼2)𝐼2∈ρ2
θ1(𝐼2)  ≥  ∑ max

h∈𝛽
𝑉2(ℎ, 𝐼2)𝐼2∈ρ2

θ1(𝐼2) 

(𝑉2(ℎ, 𝐼2)  =  ∑ 𝑢(ℎ(ω))

𝜔∈𝐼2

𝜃1(𝜔 | 𝐼2)) 

3. Supp (θ1)10 = Ω 

 

 We will use  ≿∗ over menus to represent her preference just before the first partitional signal and 

{ ≿∗
𝜔𝑖

}𝜔𝑖∈𝐼1𝑘
  (k = 1, 2, ••, n11) over menus to represent her preference just after the first partitional 

signal. Condition 2 in the definition says she chooses a menu from the selected menu of menus 

knowing that the partitional signal will come twice later in order to maximize her ex ante expected 

utility, taking into account that she will choose the best act in the future. Condition 3 in the definition 

asserts Ω contains no redundant states. 

 

4.2 Dynamic Consistency between Preferences over Menus 

 We consider Dynamic Consistency between preferences over menus for the following steps. In the 

first step, we argue an objective state signal case. In the second step, we consider the partitional 

signal case. That is, we first argue  ≿∗ and  ≿∗
𝜔𝑖

 for each 𝜔𝑖 ∈ Ω, which means a preference 

                                                   
9 A reverse Bayesianism rule is first introduced in Karni and Viero (2013). 
10 The support of θ1 for a given probability measure θ1. It means that every state in Ω has positive 

probability. 
11 n is less than the number of states. 
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relation when realizing the specific state 𝜔𝑖 ∈ Ω. And later we consider  ≿∗ and { ≿∗
𝜔𝑖

}𝜔𝑖∈𝐼1𝑘
. As 

noticed above, there are two changes related to Riella: (1) acts rather than lotteries; and (2) the 

partitional signal rather than the state signal. Define the Preference for Flexibility, which is due to 

DLR. 

 

Definition 5. A binary relation  ≿∗ over K(ℍ) values flexibility more than  ≿∗
𝜔𝑖

 over K(ℍ) if, for 

any two menus 𝛼 and 𝛽 in the menu of menus 𝑥0 with 𝛽 ⊆ 𝛼. 

α  ≻∗
𝜔𝑖

 𝛽 ⇒ 𝛼 ≻∗  𝛽 

 

 It is also well-known by DLR that  ≿∗ values more than flexibility than  ≿∗
𝜔𝑖

 if and only if the 

subjective state space that represents  ≿∗ is larger than the subjective state space that represents 

 ≿∗
𝜔𝑖

. The following definition is introduced by Riella, which is equivalent to the subjective version 

of Dynamic Consistency in Riella. 

 

Definition 6. Flexibility Consistency 

For any menu 𝛼 ∈ K(ℍ) and menu 𝛽 ∈ K(ℍ̂)12 in the menu of menus 𝑥0, α  ≻∗
𝜔𝑖

 𝛽 and 𝛽  ≿∗ 𝛼 

implies that there exists a menu 𝛾 such that 𝛼 ⋃ 𝛽 ⋃ 𝛾 ∽∗
𝜔𝑖

𝛼 ⋃ 𝛾, but 𝛼 ⋃ 𝛽 ⋃ 𝛾 ≻∗ 𝛼 ⋃ 𝛾 

Lemma 1. If  ≿∗ and  ≿∗
𝜔𝑖

 satisfy Flexibility Consistency, then  ≿∗ values flexibility more 

than  ≿∗
𝜔𝑖

. 

 

 It means that any disagreement between  ≿∗ and  ≿∗
𝜔𝑖

 is only a desire for flexibility.  ≿∗ values 

more than  ≿∗
𝜔𝑖

. Note that we require the existence of 𝛾 and 𝛽 ∈ K(ℍ̂) due to a technical reason 

in order to complete Theorem 3. The next lemma was shown by Riella. The following theorem is 

the main result in the first step we state above. 

 

Theorem 3. The following statements are equivalent. 

1. ≿∗ and  ≿∗
𝜔𝑖

 satisfy Flexibility Consistency 

 

2. Let Ω and 𝜔𝑖  be the unique subjective state space of  ≿∗ and   ≿∗
𝜔𝑖

, respectively. For any two 

menus 𝛼 and 𝛽 in the menu of menus 𝑥0 with 

max
h∈𝛼 

𝑉2(ℎ, 𝐼2) = max
h∈𝛽

𝑉2(ℎ, 𝐼2)  for all 𝜔 ∈ Ω ∖ 𝜔𝑖, 

 

α   ≿∗  𝛽 ⇔ α  ≿∗
𝜔𝑖

 𝛽 

 

Proof of Theorem 3. 

                                                   
12 We define ℍ̂= {ℎ│Ω → int Δ(Z)} and K(ℍ̂) is the set of all subsets of ℍ̂. 



12 

 

The way of this proof is almost all the same as the proof of main theorem in Riella. ■ 

 

 From now on, we consider the partitional signal case. Riella also states that multiple signals can be 

interpreted as the partitional signal if the condition below holds. 

 

Definition 7.  

For every subset J of  𝐼1𝑘, there exists menus 𝛼 and 𝛽 in the menu of menus 𝑥0 with  𝛽 ⊆ 𝛼, such 

that 𝛼 ∽∗
𝜔𝑖

 𝛽 for all 𝜔𝑖 ∈ J, but 𝛼 ≻∗  𝛽. 

 

Definition 8.  

For any two menus 𝛼 and 𝛽 in the menu of menus 𝑥0, if α   ≿∗
𝜔𝑖

𝛽 for every 𝜔𝑖 ∈ 𝐼1𝑘 , then 

α  ≿∗  𝛽. 

 

 Definition 7 means any subsets of the relation in { ≿∗
𝜔𝑖

}𝜔𝑖∈𝐼1𝑘
  do not waste of all the flexibility 

represented by ≿∗. 

 

Proposition 1. ≿∗  and  ≿∗
𝜔𝑖

 satisfy Flexibility Consistency. { ≿∗
𝜔𝑖

}𝜔𝑖∈𝐼1𝑘
 (k = 1, 2, ••, n) and 

 ≿∗ satisfy Definition 7 and 8 if and only if the collection 𝐼1𝑘 (k = 1, 2, ••, n) used in { ≿∗
𝜔𝑖

}𝜔𝑖∈𝐼1𝑘
 

is a partition of Ω. 

 

Proof of Proposition 1. 

The way of this proof is almost all the same as the proof of Proposition in Riella. ■  

 

The following result is our main theorem in section 4. Part2 in the theorem can be interpreted the 

appropriate version of Dynamic Consistency when the subjective state is finite and each signal the 

DM faces is partition. 

 

Theorem 4. The following statements are equivalent. 

1. ≿∗  and  ≿∗
𝜔𝑖

 satisfy Flexibility Consistency. { ≿∗
𝜔𝑖

}𝜔𝑖∈𝐼1𝑘
 (k = 1, 2, ••, n) and ≿∗ satisfy 

Definition 7 and 8. 

 

2. Let Ω and 𝐼1𝑘 be the unique subjective state space of  ≿∗ and { ≿∗
𝜔𝑖

}𝜔𝑖∈𝐼1𝑘
, respectively. For 

any two menus 𝛼 and 𝛽 in the menu of menus 𝑥0 with 

max
h∈𝛼 

𝑉2(ℎ, 𝐼2) = max
h∈𝛽

𝑉2(ℎ, 𝐼2)  for all 𝜔 ∈ Ω ∖ 𝐼1𝑘, 

α   ≿∗  𝛽 ⇔ α   ≿∗
𝐼1𝑘

 𝛽 
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3. After the partitional signal, in terms of the belief of the state space, the Bayesian updating is 

applied. 

 

Proof of Theorem 4. 

This part has been revised.  

 

5   Conclusion and Discussion 

 In this paper, we show a Two-Stage-Partitional Representation and build the subjective version of 

Dynamic Consistency among two different preference relations over menus before and after the first 

signal when the subjective state is finite and each signal the DM faces is partition. Theorem 2 and 

Theorem 4 are our main theorems.   

 However, changing the subjective partitional signal to the objective partitional signal in section 4 is 

too restrictive. Therefore, as a future issue, we should consider the elicitation of both the first and the 

second subjective partitional signal in the context of a Two-Stage-Partitional Representation so that 

we will consider the subjective version of Dynamic Consistency without such a restrictive condition. 
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