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Abstract

We examine supply function equilibrium, introduced by Klemperer and Meyer (1989)

and accommodate the objective functions to corporate social responsibility. Even though

there exist many equilibria if there is no uncertainty in a demand function, but under a

setting with demand uncertainty, properties of symmetric equilibria are characterized.

Furthermore, under a linear demand with uncertainty, we obtain a unique equilibrium

with an analytical solution. Using the linear example, we show that supply functions

in the equilibrium converges to price contract as slopes of marginal cost functions

converges to 0, for any extent of corporate social responsibility. Supply functions in the

equilibrium converge to their marginal cost functions as both �rms converge to public

�rms.

Key words: supply function equilibrium, corporate social responsibility, partial privatiza-

tion
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1 Introduction

Since Singh and Vives (1984) pointed out that a quantity contract dominates a price con-

tract, a bunch of researches showed its robustness.1 Matsumura and Ogawa (2012) showed

that, however, if there is a public �rm who wants to maximize social welfare, the result is

reversed. Ghosh and Mitra (2014) and Matsumura and Ogawa (2014) generalize it to compe-

tition among two �rms with cooperate social responsibility (henceforth, CSR), in a sense that

they partially care about social welfare. They obtain an intriguing �nding that the reversal

of price/quantity competitions is not caused by the existence of �rms caring about society,

but by asymmetry in objective functions. In this paper, we examine whether the robust-

ness of Singh and Vives (1984) in symmetry settings still holds even if �rms cannot commit

either price or quantity contracts as in the models by Singh and Vives (1984), Matsumura

and Ogawa (2012), and Matsumura and Ogawa (2014) but choose arbitrary supply sched-

ules simultaneously. In order to answer this question, we employ an equilibrium concept of

supply function equilibrium (henceforth, SFE ), introduced by Klemperer and Meyer (1989)

and accommodate the objective functions to CSR. As in Klemperer and Meyer (1989), there

exist many equilibria if there is no uncertainty in a demand function, but under a setting

with demand uncertainty, properties of symmetric equilibria are characterized. Furthermore,

under a linear demand with uncertainty, we obtain a unique equilibrium with an analytical

solution. Using the linear example, we show that supply functions in the equilibrium con-

verges to price contract as slopes of marginal cost functions converges to 0, for any extent of

CSR. Supply functions in the equilibrium converge to their marginal cost functions as both

�rms converge to public �rms.

2 SFE and CSR

SFE is an equilibrium concept introduced by Klemperer and Meyer (1989). Firms choose

their own supply schedule simultaneously, and then, the market is cleared such that total

1See Cheng (1985), Tanaka (2001a,b), and Tasnádi (2006).
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supply matches to the demand at a certain price. In the model with demand uncertainty,

market is cleared after the realization of uncertainty. SFE is de�ned as the (pure strategy)

Nash equilibria in this game. A remarkable feature of SFE is that it is characterized as locus

of ex post optimal price-quantity pairs given the other's supply function. That means, each

�rm guesses the other's (�xed) supply schedule. After the realization of demand uncertainty,

combined with the other's supply function, a residual demand function is determined. The

�rm chooses its ex post optimal price-quantity pair along with the residual demand (there

is no incentives to choose price-quantity pair away the residual demand). Ex post optimal

points vary according to realizations of uncertainty even though she assumes the other's

supply function �xed. Then, locus of ex post optimal points arise as a function from price to

quantity. Since she can obtain ex post optimized pro�t through this supply function, she has

no incentive to take other supply functions in the �rst stage given other's supply function.

Thus, locus of ex post optimal points given other's supply function is a best response to the

other's supply function. By considering such best responses for each �rms, we obtain NE in

this game, in other words, SFE.

This equilibrium concept would be valid in cases where �rms guess other's strategy as

an arbitrary function rather than a price contract with no limit in quantities or a quantity

contract with no limit in prices. After Klemperer and Meyer (1989) introduced this concept,

SFE is applied mostly in a literature on auctions. For instance, Green and Newbery (1992)

and Wolfram (1999) analyze the British electricity market using SFE. Vives (2011) proposes

applications in demand schedule competitions in �nancial markets by reinterpreting SFE.

Even though SFE is usually characterized as continuous functions in contrast to auctions

in reality, Holmberg et al. (2013) derive conditions that the equilibrium in a discrete model

converges to continuous SFE.

The objective function with CSR, in which �rms consider a convex combination of

its own pro�t and the social welfare, is introduced by Matsumura (1998). We can lit-

erally interpret it as a objective function with CSR or as that of some partially priva-

tized �rms. Even though the main measures of CSR would be actions on environment or
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poverty, we focus on CSR through their own business as in Matsumura and Ogawa (2014)

and Ghosh and Mitra (2014). In fact, some �rms argue that they set low prices in favor

of consumers. It is also possible that partially privatized �rms whose markup is regulated

would set low prices, or that the government requires large amount of supply trying to sup-

ply as many consumers as possible. Thus, trying to improve the welfare through their own

business is also common in the society.

In the following section, we generalize the model by Klemperer and Meyer (1989) to

accommodate it to CSR, and then, characterize the equilibria.

3 Model

3.1 Without Uncertainty

The demand curve is Q = D (p). We assume that D is twice continuously di�erentiable,

strictly decreasing and concave on p ∈ (0, p̂), where p̂ is a price such that D (p̂) = 0. The

�rms have identical cost function C satisfying C ′ (p) ≥ 0, and C ′′ (p) ≥ 0 ∀p ∈ [0, ∞). A

strategy for �rm i (i = 1, 2) is a function mapping from price into quantity : Si : [0, p) →

(−∞, ∞). The �rm i's payo� is de�ned as vi = θSW + (1− θ)πi, where θ ∈ (0, 1), SW is

the total social surplus, and πi is �rm i's pro�t. We denote a positive output pair as (q̄1, q̄2)

and a market clearing price as p̄ = D−1 (q̄1, q̄2).

We assume that �rms 1 and 2 choose supply function simultaneously and we focus on

pure strategy Nash equilibria, in which Si maximizes i's payo� given that j chooses Sj

(i, j = 1, 2, j 6= i).

Claim 1 If there is no uncertainty in the demand function, any pairs of quantities(q̄1, q̄2)

s.t. ∀i = 1, 2
(1−θ)q̄i+θ[(p̄−C′(q̄j))D′(p̄)]

(1−θ)(p̄−C′(q̄i))+θ(C′(q̄j)−C′(q̄i)) ≥ 0 (j 6= i) are supported as an outcome of supply

function equilibria.
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Proof of Claim 1 To support (q̄1, q̄2) as an equilibrium outcome, we seek a pair

of supply functions S1 and S2 passing through (p̄, q̄1) and (p̄, q̄2) respectively, and such

that (p̄, q̄i) is a pro�t maximizing point along i's residual demand curve given other's supply

function Sj(i, j = 1, 2, j 6= i). Here, we assume that supply functions are twice continuously

di�erentiable for a moment, and later, we will show that any (q̄1, q̄2) satisfying the condition

in the claim is supported by such supply functions.

Given Sj, �rm i's pro�t maximization problem is written as follows:

max
p

(1− θ) [p (D (p)− Sj (p))− C (D (p)− Sj (p))]

+ θ

[ˆ p̂

p

D (ṗ) dṗ+ p (D (p)− Sj (p))− C (D (p)− Sj (p)) + pSj (p)− C (Sj (p))

]
.

The �rst order condition is

(1− θ)
[
(D (p)− Sj (p)) + (p− C ′ (D (p)− Sj (p)))

(
D′ (p)− S ′j (p)

)]
+ θ

[
(p− C ′ (D (p)− Sj (p)))

(
D′ (p)− S ′j (p)

)
+ (p− C ′ (Sj (p)))S ′j (p)

]
= 0.

In order for p̄ to solve this equation, we must have

S ′j (p̄) =
(1− θ) [q̄i + (p̄− C ′ (q̄i))D′ (p̄)] + θ [(p̄− C ′ (q̄i))D′ (p̄)]

(1− θ) (p̄− C ′ (q̄i)) + θ (C ′ (q̄j)− C ′ (q̄i))

= D′ (p̄) +
(1− θ) q̄i + θ [(p̄− C ′ (q̄j))D′ (p̄)]

(1− θ) (p̄− C ′ (q̄i)) + θ (C ′ (q̄j)− C ′ (q̄i))
. (1)

The second derivative of i's payo� with respect to p is written as
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∂2vi
∂p2

= θ[
(
1− C ′′ (D (p)− Sj (p))

(
D′ (p)− S ′j (p)

)) (
D′ (p)− S ′j (p)

)
+ (p− C ′ (D (p)− Sj (p)))

(
D′′ (p)− S ′′j (p)

)
+

(
1− C ′′ (Sj (p))S ′j (p)

)
S ′j (p)

+ (p− C ′ (Sj (p)))S ′′j (p)]

+ (1− θ) [2
(
D′ (p)− S ′j (p)

)
− C ′′ (D (p)− Sj (p))

(
D′ (p)− S ′j (p)

)2

+ (p− C ′ (D (p)− Sj (p)))
(
D′′ (p)− S ′′j (p)

)
]

∂2vi
∂p2
|p=p̄ = θ[D′ (p)− C ′′ (q̄i)

(
D′ (p̄)− S ′j (p̄)

)2

+ (p̄− C ′ (q̄i))D′′ (p̄)

− C ′′ (q̄j)
(
S ′j (p̄)

)2

+ (C ′ (q̄i)− C ′ (q̄j))S ′′j (p̄)]

+ (1− θ) [2
(
D′ (p̄)− S ′j (p̄)

)
− C ′′ (q̄i)

(
D′ (p̄)− S ′j (p̄)

)2

+ (p̄− C ′ (q̄i))
(
D′′ (p̄)− S ′′j (p̄)

)
]

Therefore, if
(1−θ)q̄i+θ[(p̄−C′(q̄j))D′(p̄)]

(1−θ)(p̄−C′(q̄i))+θ(C′(q̄j)−C′(q̄i)) ≥ 0, (q̄1, q̄2) is supported by a supply function

equilibrium with supply functions which satisfy (1) at p̄. Global concavity of the objective

function is satis�ed if other �rms take Sj (p) s.t. D′′ (p)− S ′′j (p) = 0∀p .Q.E.D.

3.2 With Uncertainty

Let demand be subject to an exogenous shock ε, where ε is a scalar random variable

with strictly positive density everywhere on the support [ε, ε̄] : Q = D (p, ε) , where

∀ (p, ε) , −∞ < Dp (p, ε) < 0, Dpp (p, ε) ≤ 0, and Dε (p, ε) > 0. We assume that Dpε (p, ε) =
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0∀ (p, ε) . SinceDε (p, ε) > 0, we can invert the demand curve and write e (Q, p) for the value

of the shock ε for which demand is Q at price p, that is, e (Q, p) satis�es Q = D (p, e (Q, p)) .

Since for ε < e (0, 0), there is no point on D (p, ε) with p ≥ 0 and Q ≥ 0, we assume that

the support of ε is a subset of [e (0, 0) , ∞). The �rms have identical cost function C satis�es

C ′ (p) ≥ 0 and 0 < C ′′ (p) <∞∀q ∈ [0, ∞). Without loss of generality, let C ′ (0) = 0.

We assume that �rms 1 and 2 choose supply function simultaneously before the realization

of ε. Then, a strategy for �rm i (i = 1, 2) is de�ned as a function mapping from price

into quantity: Si : [0, p) → (−∞, ∞). After the realization of ε, supply functions are

implemented by each �rm producing at a point (p∗ (ε) , Si (p
∗ (ε))) such that D (p∗ (ε)) =

S1 (p∗ (ε))+S2 (p∗ (ε)), that is, demand matches total supply. If there are multiple intersection

of total supply and demand, supply functions are implemented at a price which maximizes

i's payo� given that other is taking Sj (p), provided such a unique maximizer for each �rm

exists and coincides each other.

We focus on pure strategy Nash equilibria, in which Si maximizes i's payo� given that j

chooses Sj (i, j = 1, 2, j 6= i).

Firm 1's residual demand at any price is the di�erence between demand and quantity

that 2 is willing to supply at that price. Thus, if �rm 2 is committed to the supply function

S2 (p) , 1's residual demand curve is written as D (p, ε)−S2 (p) . Since ε is a scalar, the set of

payo� maximization points along 1's residual demand curve as ε varies is a one-dimensional

curve in price-quantity space. If this curve can be described by a supply function qi = Si (p)

that intersects each realization of i's residual demand curve once and only once, then by

committing to Si, �rm i can achieve ex post optimal adjustment to the shock. In this case,

Si is clearly i's unique optimal supply function in response to Sj.We assume supply function

and show later that under our hypothesis there exist equilibria in which this is indeed this

case.
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Given Sj, �rm i's pro�t maximization problem is as follows:

max
p

(1− θ) [p (D (p, ε)− Sj (p))− C (D (p, ε)− Sj (p))] (2)

+ θ

[ˆ p̂

p

D (ṗ, ε) dṗ+ p (D (p, ε)− Sj (p))− C (D (p, ε)− Sj (p)) + pSj (p)− C (Sj (p))

]
.

The �rst order condition is

∂vi
∂p

= (1− θ)
[
(D (p, ε)− Sj (p)) + (p− C ′ (D (p, ε)− Sj (p)))

(
Dp (p, ε)− S ′j (p)

)]
(3)

+ θ
[
(p− C ′ (D (p, ε)− Sj (p)))

(
Dp (p, ε)− S ′j (p)

)
+ (p− C ′ (Sj (p)))S ′j (p)

]
= 0.

Let {pn(ε)}Nn=1 be prices which satisfy (3) for given ε and Sj (p) and let D (pn (ε) , ε) −

Sj (pn (ε) (ε)) = qn (ε) . Suppose each pn(ε) is invertible, then Si (p) ≡ qn
(
(pn)−1 (p)

)
. Let

us rewrite (3) so that it implicitly de�nes the function Si (p) . Replace q
opt
i (ε) by Si (p) and

use e (Q, p) as de�ned above to replace Dp

(
popti (ε) , ε

)
by Dp (p, e (Si (p) + Sj (p) , p)), so

(3) becomes

∂vi
∂p

= (1− θ)
[
Si (p) + (p− C ′ (Si (p)))

(
Dp (p, e (Si (p) + Sj (p) , p))− S ′j (p)

)]
(4)

+ θ
[
(p− C ′ (Si (p)))

(
Dp (p, e (Si (p) + Sj (p) , p))− S ′j (p)

)
+ (p− C ′ (Sj (p)))S ′j (p)

]
= 0.

We suppose symmetric equilibrium, so (4) becomes

S ′j (p) =
(1− θ)S (p) + (p− C ′ (S (p)))Dp (p, e (2S (p) , p))

(1− θ) (p− C ′ (S (p)))
. (5)

We assume that Dpε = 0∀ (p, ε) . then demand is translated horizontally by the shock ε.

Then, if we write Dp (p, e (2S (p) , p)) simply as Dp (p) , (5) becomes the di�erential equation

S ′j (p) =
(1− θ)S + (p− C ′ (S))Dp (p)

(1− θ) (p− C ′ (S))
≡ f (p, S) . (6)
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The non-autonomous �rst-order di�erential equation (6) can be written as the system of

two-dimensional autonomous di�erential equation

S ′ (t) = (1− θ)S + (p− C ′ (S))Dp (p) ,

p′ (t) = (1− θ) (p− C ′ (S)) .

4 Results

We characterize the di�erential equation (6) by the following series of lemmas.

Lemma 1 The locus of points satisfying f (p, S) = 0 is a continuous, di�erentiable function

S = S0 (p) , satisfying

(i) S0 (0) = 0,

(ii) S0 (p) < (C ′)−1 (p) , ∀p > 0,

(iii) S0′ (p) is positive and increasing in θ,∀p≥0, and

(iv) S0′ (0) < 1
C′′(0)

.

Proof of Lemma 1: Di�erentiation of (6) w.r.t. S yields

fS (p, S) =
p− C ′ (S) + SC ′′ (S)

(p− C ′ (S))2

so for all
(
p̄, S̄

)
6= (0, 0) such that f

(
p̄, S̄

)
= 0,

fS
(
p̄, S̄

)
=

1

p̄− C ′
(
S̄
) +

S̄

p̄− C ′
(
S̄
) C ′′

(
S̄
)

p̄− C ′
(
S̄
)

=
1− 1

(1−θ)Dp (p̄)C ′′
(
S̄
)

p̄− C ′
(
S̄
) 6= 0.
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Therefore, by the Implicit Function Theorem, f (p, S) = 0 implicitly de�nes, in the neigh-

borhood of any such
(
p̄, S̄

)
, a unique function S = S0 (p) , which is continuous and di�er-

entiable.

To prove (i) and (ii), observe that ∀θ ∈ [0, 1), either S0 (p) and p − C ′ (S0 (p)) are

both positive or they are both zero since −∞ < Dp (p) < 0 and f (p, S0 (p)) = 0. Hence,

p > C ′ (S0 (p)) whenever S0 (p) > 0. Furthermore, S0 (0) = 0 is the unique solution to

f (0, S) = 0. For all p > 0, S0 (p) > 0 (otherwise, S0 (p) = 0 and p − C ′ (S0 (p)) > 0) and

p > C ′ (S0 (p)) . Since C ′′ > 0, we can take inverse function of C ′ and obtain (C ′)−1 (p) >

S0 (p) for all p > 0. Here, as p → 0, the upper bound of S0 (p) converges to zero and

S0 (p) > 0 for all p > 0. Then, S0 (p)→ 0 as p→ 0. Thus, S0 (p) is continuous at p = 0.

To prove (iii) and (iv), di�erentiate f (p, S0 (p)) = 0 totally with respect to p and

substitute using this equation to get

S0′ (p) = −Dp (p) +Dpp (p) (p− C ′ (S0 (p)))

(1− θ)−Dp (p)C ′′ (S0 (p))
.

Now limp→0S
0′ (p) exists and equals

− Dp (0)

(1− θ)−Dp (0)C ′′ (0)
≡ S0′ (p) ,

where 0 < S0′ (p) < 1
C′′(0)

, so S0 (p) is continuous and di�erentiable at p = 0. Q.E.D.

Lemma 2 The locus of points satisfying f (p, S) =∞ is a continuous, di�erentiable func-

tion, S = S∞ (p) ≡ (C ′)−1 (p) . Hence, S∞ (0) = 0 and 0 < S∞′ (p) <∞∀p ≥ 0.

Proof of Lemma 2: (same as the proof of claim 2 in KM ) From (6), S∞ (p)

solves f (p, S∞ (p)) = ∞ implies S∞ (p) solves p − C ′ (S∞ (p)) = 0, so since C ′′ > 0,

S∞ (p) = (C ′)−1 (p) ∀p. The stated properties of S∞ (p) follows from the assumptions on

C ′ (S). Q.E.D.
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Lemma 3 For all points (p, S) between the f = 0 and f =∞ loci, 0 < f (p, S) <∞. For

all points in the �rst quadrant above f = 0 locus or below the f = ∞ locus, 0 > f (p, S) >

−∞.

Proof of Lemma 3: (same as the proof of claim 3 in KM) Since S
p−C′(S)

is �nite

and increasing in S as long as p > C ′ (S), for a given p̄, f (p̄, S) is �nite and monotonically

increasing in S for S ∈ [0, (C ′)−1 (p)). Below the f =∞ locus, 0 > S
p−C′(S)

> −∞, so since

0 > Dp > −∞, 0 > f (p, S) > −∞. Q.E.D.

Lemma 4 If S (p) solves (6) and other �rm takes S (p), the second derivative of i's payo�

with respect to p for a given ε evaluated at an intersection of S (p) and residual demand

function D (p) + ε− S (p) is written as

∂2vi (p, ε; S (p))

∂p2
|p=p∗ = (Dp (p∗)− S ′ (p∗)) ((1− θ) + C ′′ (D (p∗) + ε− S (p∗))) (7)

−C ′′ (D (p∗) + ε− S (p∗)) (Dp (p∗)− S ′ (p∗))2 − (1− θ)S ′ (p∗) ,

where p∗ is a price that solves D (p∗) + ε− 2S (p∗) = 0.

Proof of Lemma 4: Given that j chooses S (p), the second order derivative of i's

payo� with respect to p for a given ε is

∂2vi (p, ε; S (p))

∂p2
= (2− θ) {Dp (p)− S ′ (p)} − C ′′ (D (p) + ε− S (p)) (Dp (p)− S ′ (p))2

+ (p− C ′ (D (p) + ε− S (p))) (Dpp (p)− S ′′ (p))

+θS ′ (p)− θC ′′ (S (p)) (S ′ (p))
2

+ θ (p− C ′ (S (p)))S ′′ (p) . (8)

If S (p) solves (6), we can di�erentiate (6) totally with respect to p to obtain an expression

for S ′′ (p):

S ′′ (p) =
X1

((1− θ) (p− C ′ (S (p))))2 , (9)
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where

X1 ≡ [(1− θ)S ′ (p) + (1− C ′′ (S (p))S ′ (p))Dp (p) + (p− C ′ (S (p)))Dpp (p)] [(1− θ) (p− C ′ (S (p)))]

− [(1− θ)S (p) + (p− C ′ (S (p)))Dp (p)] [(1− θ) (1− C ′′ (S (p))S ′ (p))] .

Using (6) to substitute for S (p) in (9) gives

S ′′ (p) =
(1− θ)S ′ (p) + (1− C ′′ (S (p))S ′ (p)) (Dp (p)− (1− θ)S ′ (p)) + (p− C ′ (S (p)))Dpp (p)

(1− θ) (p− C ′ (S (p)))
,

(10)

so when S (p) solves (6), S ′′ (p) in (8) is replaced by (10). Besides, if we evaluate at p = p∗

where p∗ solves D (p∗) + ε− 2S (p) = 0, (8) becomes (7). Q.E.D.

By these lemmas, we have the following proposition.

Proposition 1 (Necessity of positive slope) If ε has full support (ε = e (0, 0) , ε̄ =∞)

and S is a symmetric SFE tracing through ex post optimal points, then ∀p ≥ 0, S satis�es

(6) and 0 < S ′ (p) <∞.

Proof of Proposition 1 Satisfaction of (6) ∀p ≥ 0 is a necessary condition for a

supply function de�ned for all p ≥ 0 to trace through ex post optimal points when the other

�rm commits to the same supply function. To show that 0 < S ′ (p) < ∞∀p ≥ 0 is also a

necessary condition, we show that if, for some p, S ever crosses either f = 0 from below or

f =∞ from the left, then S must eventually violate the global optimality2.

Once trajectory S cross f = 0 from below, S ′ become and stays negative and, from (A2),

S ′′ also becomes and stays negative. Therefore, the trajectory will eventually intersect the

S = 0 axis at a point (p0, 0) with p0 > C ′ (0) , where S ′ (p0) = f (p0, 0) = 1
1−θDp (p0) .

Therefore, for ε = e (0, p0) , Q = D (p0, ε) = 0 by de�nition and then, residual demand

2Actually, such a part of S represents ones of multiple intersections for certain ε's which results smaller
pro�t than another intersection for the same ε.
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Figure 1: A supply function (satisfying FOC and symmetry) violating global optimality.
(Left: θ = 0, Right: 0 < θ < 1 )

D (p0, ε)−S (p0) = 0. Then, given �rm j takes S, p0 satis�es the �rst order condition but that

result in qi = qj = 0 and SW = πi = vi = 0. On the other hand, since S ′ (p0) = 1
1−θDp (p0),

S (p) and the residual demand D (p, ε) − S (p) for the same ε = e (0, p0) cross each other

at another point (p1, q1) where q1 > 0 and p1 > C ′ (q1) (Fig.1). Since SW, πi, vi > 0 at

(p1, q1), �rm i has an incentive to adjust from p0 to p1. Thus, S eventually violates the

global optimality. Q.E.D.

Lemma 5 (Local optimality of S with positive slope) If ε has full support (ε = e (0, 0) , ε̄ =∞)

and S satis�es (6) and 0 < S ′ (p) <∞, then S is locus of local optimal points given that the

other �rm is taking S.

Proof of lemma 5: Since 0 < S ′ (p) < ∞, total supply intersects total demand at a

unique point for each ε. Since S satis�es (6) ∀p ≥ 0, the �rst order condition for ex post payo�

maximization is satis�ed everywhere along S when the other �rm commits to the same supply

function. The condition on S and S ′ together imply that ∂2vi(p, ε;S(p))
∂p2

|p=p∗ < 0∀ε ≥ e (0, 0).

Therefore, S is locus of local (ex post) optimal points given that the other �rm is taking S.

Q.E.D.

In cases of linear demand and quadratic cost function, we can characterize SFE more

clearly, and we can show uniqueness of a symmetric SFE.
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4.1 Linear example

In this subsection, we specify cost functions and a demand function to show an example with

an analytical solution. The identical cost functions is de�ned as C (S) = c
2
S2 and the total

demand function is de�ned as D (p, ε) = ε−mp. Then, the following proposition holds.

Proposition 2 (Uniqueness of symmetric SFE) In the linear case, if ε has full support

(ε = e (0, 0) , ε̄ =∞), then S is a symmetric SFE tracing through ex post optimal points if

and only if S satis�es (6) and 0 < S ′ (p) <∞. Furthermore, such a S is characterized as a

unique and linear supply function.

Proof of Proposition 2 By proposition 1, for S to be a symmetric SFE, S must

satisfy (6) and 0 < S ′ (p) <∞. In the linear case, (6) is rewritten as follows:

S ′ (p) =
(1− θ)S + {p− C ′ (S)} ·Dp (p)

(1− θ) {p− C ′ (S)}

=
(1− θ)S + {p− cS} · (−m)

(1− θ) {p− cS}
.

In autonomous form,

dS

dt
= (1− θ)S + {p− cS} · (−m)

dp

dt
= (1− θ) {p− cS} .

Then,

14



 dS
dt

dp
dt

 =

 (1− θ +mc)S −mp

−c (1− θ)S + (1− θ) p


=

 (1− θ +mc) −m

−c (1− θ) (1− θ)


 S

p

 .
For any eigenvalue r, the following equation must be satis�ed:

det


 (1− θ +mc) −m

−c (1− θ) (1− θ)

− rI
 = 0

⇔ r =
2 (1− θ) +mc±

√
m2c2 + 4mc (1− θ)

2
.

We have di�erent and unequal eigenvalues. For each eigenvalue r1, r2, eigenvectors are

de�ned as follows: 
 (1− θ +mc) −m

−c (1− θ) (1− θ)

− riI

 ui

wi

 = 0

⇔

 ((1− θ +mc)− ri)ui −mwi

−c (1− θ)ui + ((1− θ)− ri)wi

 = 0.

Then,

ui
wi

=
(1− θ)− ri
c (1− θ)

=
(1− θ)− (1− θ)− mb±

√
m2c2+4mc(1−θ)

2

c (1− θ)

=
−mb∓

√
m2c2 + 4mc (1− θ)
2c (1− θ)

=
−m∓

√
m2 + 4m(1−θ)

c

2 (1− θ)
.
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Let larger eigenvalue be r1. Then, u1
w1

< 0 and u2
w2

> 0. Since the eigenvalues are real and

unequal, the solution to the di�erential equation is written as

 S

p

 = A1e
λ1t

 u1

w1

+ A2e
λ2t

 u2

w2

 (11)

where A1 and A2 are arbitrary constants. Here, if A1 6= 0,

S

p
=

A1e
λ1tu1 + A2e

λ2tu2

A1eλ1tw1 + A2eλ2tw2

=
A1u1 + A2

(
e(λ2−λ1)t

)
u2

A1w1 + A2 (e(λ2−λ1)t)w2

→ u1

w1

< 0 as t→∞,

so all trajectories eventually leave the region between f = 0 and f = ∞ and their slope

become negative. Therefore, only remaining S satisfying the necessary conditions is (11)

with A1 = 0:

S (p) =
−m+

√
m2 + 4m(1−θ)

c

2 (1− θ)
p ≡ g(θ)

h(θ)
. (12)

Suppose that other �rm is taking this linear supply function. Then, local optimality

for �rm i's payo� function is satis�ed along S (p) by lemma 5, and residual demand is also

linear since demand function is de�ned as linear. Since, given ε, both of residual demand

and marginal cost are linear in p, �rm i's pro�t function πi is written as a function quadratic

in p. On the other hand, since, given ε, demand function and industrial marginal costs are

linear in p, SW is written as a function quadratic in p. Therefore, the payo� for �rm i, which

is weighted average of i's pro�t and SW , is written as a quadratic function. Therefore, the

local optimal point given ε is actually a unique global maximizer given ε. Thus, (12) is a

symmetric SFE. Q.E.D.
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We check the e�ect of θ. Since g(1) = h(1) = 0 by l'Hopital's rule we have

lim
θ→1

S(p) = lim
θ→1

g(θ)

h(θ)
= lim

θ→1

g′(θ)

h′(θ)
= lim

θ→1

m

c

p√
m2 + 4m(1−θ)

c

=
p

c

Thus, θ converges to 1 and supply function converges to marginal production cost.

5 Conclusion

As shown in the previous section, when the level of CSR improve in both �rms, welfare would

increase since the supply function converges to marginal cost functions. Thus, symmetric

improvement in CSR would actually improve social welfare.

In contrast to Matsumura and Ogawa (2014), if �rms can choose arbitrary supply sched-

ules, they choose ones close to price contracts under a linear demand with uncertainty and

almost linear cost functions. This result bring us a new question: 'What makes the di�er-

ence? ' Our model is di�erent from the previous research in at least three ways. First, in our

model, supply functions can take arbitrary shapes while, in the model by Matsumura and

Ogawa (2014), possible price schedules are only horizontal or vertical. Second, in contrast

to our model, �rms can commit to price/quantity contracts in the �rst stage of the model

in Matsumura and Ogawa (2014). Finally, we assume homogeneous goods rather than dif-

ferentiated goods. Changing these settings one by one and comparing them would help us

understanding what is happening in each model.
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