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Abstract

We consider a linear city model à la Hotelling with price competition. We introduce cost

uncertainty into the model. We consider a three-stage game: first, each firm chooses its

location on the linear city; second, the costs of the firms are determined; and third, each firm

sets its price. If the cost uncertainty is significant, each firm locates at the central point in an

equilibrium outcome (minimum differentiation). If the cost uncertainty is insignificant, each

firm locates at the edge of the linear city (maximum differentiation). For the middle range

of cost uncertainty, both outcomes above could appear in equilibrium (multiple equilibria).
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1 Introduction

Since the seminal work of Hotelling (1929), the model of spatial competition, which is one of

the most important models of oligopoly, has been seen by many subsequent researchers as an

attractive framework for analyzing product differentiation. The major advantage of this approach

is that it allows an explicit analysis of product selection. Of particular interest is the equilibrium

pattern of product locations and the degree of product differentiation. The original result of

Hotelling (1929) is that firms produce similar products (minimum differentiation).

d’Aspremont et al. (1979), introduce price competition into the location model of Hotelling

(1929) and consider two-stage location-price games. They show that there is no pure strategy

equilibrium under original assumptions in Hotelling (1929) when transport costs are proportional

to the distance between firm and consumer. They show that a pure strategy equilibrium exists

when transport costs are quadratic. As opposed to the result in the original work of Hotelling

(1929), in equilibrium, the products are maximally differentiated.

In this paper, we also consider a location model with price competition. We introduce a cost

uncertainty into the duopoly model. The following three-stage game is discussed: first, each

firm chooses its location on the linear city; second, the costs of the firms are determined; and

third, each firm sets its price. We find that (i) spatial agglomeration (minimum differentiation)

appears in equilibrium if the cost uncertainty is significant; (ii) maximum differentiation appears

in equilibrium if the cost uncertainty is insignificant; and (iii) both maximum and minimum

differentiations can be equilibrium outcomes if the cost uncertainty lies in the middle range.

In our model, firms dare to choose minimum differentiation if cost uncertainty is significant.

Our model provides a good description of ex post aggressive competitions between firms facing

uncertainty.

One possible source of ex post cost heterogeneity is a firm’s nationality. For example, consider

the competition between an EU firm and a US firm. Their cost differences depend on foreign

exchange rates. If the dollar becomes strong relative to the euro, the EU firm has a cost advan-

tage over the US firm. In this case, the EU firm can earn large profits by choosing the central
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position. On the other hand, if it chooses the central position, it cannot obtain positive profits

when it has a cost disadvantage. In our model, each firm dares to take this risk when the possible

ex post cost difference is significant. Due to the fluctuation of the foreign exchange rates, the

possible ex post cost difference is significant between firms located in different countries, while it

becomes relatively small between domestic firms. Our result indicates that, even under Bertrand

competition, which yields severe competition in the cases of homogeneous product markets, it is

possible that firms choose small product differentiation if firms are located in different countries.

For example, in the semiconductor industry, Micron (a US company), Samsung (a Korean com-

pany), and Infineon (a German company) produce a similar product, DRAM (dynamic random

access memory). Several Japanese firms used to produce DRAM; however, all but one firm exited

the market and began to specialize in other differentiated products. Within the US, many other

companies, such as Intel, left this market to produce differentiated products, and no major firm,

except for Micron, produces DRAM. There is another DRAM producer, in Korea, Hynix, but it

could not survive without government support. In the aviation industry, Airbus and Boeing com-

pete and survive even though they produce similar products. On the other hand, Boeing and

Lockheed (both US firms) produced similar products; however, Lockheed ultimately changed

its strategy to specialize in military products. In the tire industry, Bridgestone (a Japanese

firm), Michelin (a French firm), and Goodyear (a US firm) have similar survival strategies, while

Firestone (a US firm) has merged with Bridgestone.

Another possible source of ex post cost heterogeneity is rapid technological changes. In the

developing stages of new products, the firm with the lowest cost changes frequently. For example,

in the semiconductor industry, several firms produce less-differentiated products, DRAM. In

the earlier stages of this competition, the winners were the US firms (Intel, Motorola, and

Texas Instruments), in the next two stages (64-kbit and 256-kbit stages) NEC was the winner,

and Toshiba took over in the following stage (1-megabyte stage). None of these companies

is currently in the first place. When products go through frequent generation changes, firms

operate under uncertainty, without knowledge of which one will lead the industry with the
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lowest cost; our analysis predicts that the lesser degree of product differentiation appears under

those situations and that aggressive competition yielding large deficits inevitably appears with

a positive probability.

In our model, firms face identical cost structure with a positive probability. In this case,

central agglomeration (minimum differentiation) yields the cutthroat competition, and no firm

obtains positive profits with a positive probability. In real economies, this type of competition

is frequently observed in the semiconductor industry. Under those circumstances, the firms

could avoid such an excessive competition and could make profit if they would differentiate

their products. Our results suggest that ex post unprofitable competition caused by the lesser

differentiation is consistent with rational behavior. In our model, each firm dares to choose

central location, because it might earn large profits if it takes the cost advantage (its cost is

much lower than that of the rival).

This result is related to Cardon and Sasaki (1998). They investigate (non-spatial) patent

competition and show that clustering in the technological choice can appear in equilibrium be-

cause clustering makes the profit of the winner become huge. However, our paper’s driving force

is quite different from that of them. In their model, they assume that only one firm obtains the

patent for one technology, while in our model both firms can produce even when they choose to

produces homogeneous products. In their model, clustering restricts competition, while in our

model central agglomeration accelerates competition and central agglomeration reduces joint

profits of firms.

Some studies have already shown that the minimum differentiation may appear in equilib-

rium. Price collusion after firms have made location choices is considered Friedman and Thisse

(1993). Cooperation between firms is considered in the form of information exchange through

communication Mai and Peng (1999). The mechanisms of inducing spatial agglomeration of

these papers are completely different from those in our model. Note that these papers does not

explain ex post cutthroat competition in homogeneous product markets.

This paper is closely related to De Palma et al. (1985). They show that sufficient hetero-
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geneity between firms induces central agglomeration.1 They introduce unobservable attributes in

brand choice and consider situations in which central agglomeration does not induce the standard

Bertrand competition with homogeneous products. In our paper, only the Hotelling type product

differentiation is considered and other kinds of product differentiation are not considered. Thus,

in contrast to their models, severe Bertrand competition with homogeneous goods appears when

firms agglomerate. Nevertheless, in our model, firms dare to choose minimum differentiation.

Furthermore, they do not obtain strategic complementarity of location choices (result (iii)), and

they do not discuss the welfare implications of agglomeration. Established important contribu-

tions in this field are presented in Bester (1998). The concepts of vertical quality characteristics,

asymmetric information of this quality between sellers and consumers, and a limited number of

repeated purchases by consumers are introduced by Bester (1998).2 He shows that, even though

firms agglomerate, they can avoid cutthroat competition and they always obtain positive profits

because of the signaling effect. He finds that, in equilibrium, central agglomeration appears if the

number of repeated purchases is more than one and not too large, that maximum differentiation

appears if the number of repeated purchases is more than one and not too small, and that both

agglomeration and maximum differentiation can appears if the number of repeated purchases is

middle. In his analysis, the key point is that unobservable quality reduces the incentives for dif-

ferentiation, relaxing price competition. Our model formulation is quite different from his. First,

there is no reliance on either asymmetric information or signaling effects. Imperfect information

(or uncertainty) is introduced, but incompleteness of information (or asymmetric information)

is not assumed. Second, in our model, central agglomeration is derived, even in a one-shot

1 Heterogeneity is introduced into the Hotelling model Ziss (1993). Ex ante cost heterogeneity between incum-

bent and a new entrant is considered. The results of Ziss (1993) are quite different from ours. In Ziss (1993),

central agglomeration never appears in equilibrium, and no pure strategy equilibrium exists if both firms choose

location simultaneously. For a discussion of cost heterogeneity in a circular-city model, see also Schulz and Stahl

(1985). For studies about introducing another dimension of product differentiation, see, e.g., Ma and Burgess

(1993) and Ishibashi (2001).

2 Information asymmetry is also considered in Boyer et al. (1994) and Boyer et al. (2003). In their model, the

entrant firm does not have information about the incumbent firm.
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game. Finally, the appearance in equilibrium of aggressive and unprofitable competition without

product differentiation can be explained in our model, while, in their model, firms always make

profits.

The paper is organized as follows. The model is formulated in Section 2, and the equilibrium

outcome is investigated in Section 3. Welfare is discussed in Section 4. Section 5 is the conclusion.

All proofs of the lemmas and propositions are presented in the Appendix.

2 The model

We formulate a duopoly model. We consider a model in which a linear city of length 1 lies in

the abscissa of a line and consumers are uniformly distributed with density 1 along this interval.

Suppose that firm i (i = 1, 2) is located at point li ∈ [0, 1]. A consumer living at y ∈ [0, 1] incurs

a transport cost of t(li − y)2 when she purchases the product from firm i. The consumers have

unit demands, i.e., each consumes one or zero unit of the product. Each consumer derives a

surplus from consumption (gross of price and transport costs) equal to s. We assume that s is so

large that every consumer consumes one unit of the product. Firms 1 and 2 produce the same

physical product.

In the model, the unit cost of the product for each firm is ci, which is determined randomly.

After the firms locate at the line, Nature determines c1 and c2 independently and simultaneously.

ci = 0 with probability 1/2, and ci = c with probability 1/2 (i ∈ {1, 2}).
The game runs as follows. Each firm is risk-neutral and maximizes its own expected profits.

In the first stage, each firm i chooses its location li ∈ [0, 1] simultaneously. In the second stage,

each firm knows its own cost ci and its rival’s cost cj . In the third stage, each firm i chooses its

price pi ∈ [ci,∞) simultaneously.3 For a consumer living at

x =
l1 + l2

2
+

p2 − p1

2t(l2 − l1)
, (1)

3 Choosing pi < ci is weakly dominated by choosing pi = ci; so we assume that the lower bound of the price is

its cost.
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the total cost is the same at either of the two firms. Thus, the demand of firm 1, D1, and that

of firm 2, D2, are given by

D1(p1, p2, l1, l2) = min{max(x, 0), 1}, D2(p1, p2, l1, l2) = 1 −D1(p1, p2, l1, l2). (2)

The profit of firm i is

π = (pi − ci)Di. (3)

First, we present a result about the third-stage subgames given l1, l2, c1, and c2. It is possible

that firm 1 could be the monopolist (i.e., D1 = 1) by limit pricing, if c1 = 0 and c2 = c and the

difference between the costs ware large. In this case, firm 2 would never become the monopolist

regardless of l1 and l2. Needless to say, if the required limit price were too low, firm 1 would give

up the position of monopolist. The following Lemmas 1 (i) and (ii) present the conditions under

which firm 1 becomes the monopolist.

Lemma 1 (i) Suppose that l1 ≤ l2 and c1 < c2. D1 = 1 if and only if c2−c1 ≥ t(l2−l1)(4−l1−l2).
In this case the profit of firm 1 is c2 − c1 − t(l2 − l1)(2 − l1 − l2). (ii) Suppose that l1 > l2 and

c1 < c2. D1 = 1 if and only if c2 − c1 ≥ t(l1 − l2)(2 + l1 + l2). In this case, the profit of firm 1 is

c2 − c1 − t(l1 − l2)(l1 + l2).

We now discuss the case in which D1 < 1. Suppose that l1 ≤ l2. From Lemma 1 (i) we

consider the cases in which c2 − c1 < t(l2 − l1)(4 − l1 − l2). The first-order conditions are

∂π1

∂p1
= 0 ⇔ c1 + p2 − 2p1 + t(l2 − l1)(l2 + l1)

2t(l2 − l1)
= 0, (4)

∂π2

∂p2
= 0 ⇔ c2 + p1 − 2p2 + t(l2 − l1)(2 − l1 − l2)

2t(l2 − l1)
= 0. (5)

The second order conditions are satisfied. These equations yield

p1 =
2c1 + c2 + t(l2 − l1)(2 + l1 + l2)

3
, p2 =

c1 + 2c2 + t(l2 − l1)(4 − l1 − l2)
3

.

The quantity supplied by firm 1 is

D1 =
t(l2 − l1)(2 + l1 + l2) + c2 − c1

6t(l2 − l1)
.
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The profit functions are

π1 =
(c2 − c1 + t(l2 − l1)(2 + l1 + l2))2

18t(l2 − l1)
, π2 =

(c1 − c2 + t(l2 − l1)(4 − l1 − l2))2

18t(l2 − l1)
.

If c1 = c2 = 0 or c1 = c2 = c, the profit functions are

π1 =
t(l2 − l1)(2 + l1 + l2)2

18
, π2 =

t(l2 − l1)(4 − l1 − l2)2

18
. (6)

Suppose that l2 < l1. From Lemma 1 (ii), we consider the cases where c2 − c1 < t(l1 − l2)(2+

l1 + l2). From the symmetry of the linear city, we obtain

p1 =
2c1 + c2 + t(l1 − l2)(4 − l1 − l2)

3
, p2 =

c1 + 2c2 + t(l1 − l2)(2 + l1 + l2)
3

.

The quantity supplied by firm 1 is

D1 =
t(l1 − l2)(4 − l1 − l2) + c2 − c1

6t(l1 − l2)
.

The profit functions are

π1 =
(c2 − c1 + t(l1 − l2)(4 − l1 − l2))2

18t(l1 − l2)
, π2 =

(c1 − c2 + t(l1 − l2)(2 + l1 + l2))2

18t(l1 − l2)
.

If c1 = c2 = 0 or c1 = c2 = c, the profit functions are

π1 =
t(l1 − l2)(4 − l1 − l2)2

18
, π2 =

t(l1 − l2)(2 + l1 + l2)2

18
.

If the cost advantage of firm 1 is significant, it is optimal for firm 1 to set a price inducing

monopoly by firm 1 in the third stage. If firm 1 chooses l1 = l2, firm 1 obtains the whole market

by setting p1 = c2. If it chooses l1 �= l2, firm 1 must charge a price that is strictly lower than c2 so

as to obtain the whole market. Thus, if firm 1 relocated, it would prefer minimum differentiation.

On the other hand, if l1 = l2, firm 2’s profit would drop to zero. Thus, if firm 2 relocated, it

would have a strong incentive to avoid agglomeration, and it would want to be far away from

firm 1 so as to avoid severe competition against the strong rival.
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3 Equilibrium

We use subgame perfect Nash equilibrium as equilibrium concept. The game is solved by back-

ward induction.

Proposition 1 The agglomeration of firms (minimum differentiation) appears in an equilibrium

if and only if c ≥ c ≡ (9 −√
31)t/4 ∼ 0.858t.

We now show the intuition behind the proposition. We explain the reason why firm 1 also prefers

the central location given that l2 = 1/2, when c is sufficiently large. Without loss of generality,

we assume l1 ∈ [0, 1/2].

Consider the subgame after the costs are realized. Suppose that firm 1 has the cost advantage.

In this case, it is optimal for firm 1 to set a price inducing monopoly by firm 1. If firm 1 also

chooses l1 = 1/2, firm 1 obtains the whole market by setting p1 = c2(> c1). If it chooses l1 < 1/2,

firm 1 must charge p1 = c2 − α, where α is equal to the difference between the transport costs

to firm 1 and to firm 2 for the consumer living at point 1 (the edge of the far side from firm 1).

Thus, firm 1 prefers minimum differentiation. On the other hand, suppose that firm 1 does not

have the cost advantage. If firm 1 chooses minimum differentiation, firm 1 earns zero profits.

Thus, firm 1 has a strong incentive to avoid agglomeration and wants to be far away from firm 2

so as to avoid severe competition against the rival. The feature is similar to that in which both

firms’ costs are at the same level (discussed by d’Aspremont, Gabszewicz, and Thisse 1979).

There is a trade-off between choosing l1 = 0 and choosing l1 = 1/2. The latter is better if

the realized position of firm 1 is good, while it is worse otherwise. First, consider the case in

which firm 1 has the cost disadvantage. As c increases, the profit of firm 1 becomes smaller,

and, eventually, its profit becomes negligible even when it chooses l1 = 0. Thus, the advantage

of choosing l1 = 0 becomes smaller. Next, consider the case in which both firms have identical

costs. In this case, the profit of each firm does not depend on c. Finally, consider the case in

which firm 1 has the cost advantage. As c increases, the profit of firm 1 becomes larger. Under

these conditions, an increase in c makes the effect of the last case on the profit becomes more
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significant. Thus, firm 1 has a strong incentive to choose minimum differentiation when c is

sufficiently high.

From this discussion, we conjecture that the higher c is, the more attractive the minimum

differentiation becomes. The following proposition states that it is true.

Proposition 2 Maximum differentiation appears in an equilibrium if and only if c ≤ c̄ ≡ t(81−√
3(1928

√
241 − 29269))/18 ∼ 2.025t.

We now show that propositions 1 and 2 are not always mutually exclusive. For intermediate

values of c, both maximum and minimum differentiation can appear in equilibrium.

Proposition 3 c̄ ≥ c.

Propositions 1–3 imply that both maximum and minimum differentiation can be equilibrium

outcomes if c ∈ [c, c̄]. The strategic complementarity of location choice yields this multiplicity

of equilibria. The central location by firm 2 increases the incentive of central location by firm 1

and vice versa. We explain the intuition for this strategic complementarity.

As discussed above, when firm 2 locates at the center, it is beneficial for firm 1 to locate at

the center when it has cost advantage. On the other hand, it is beneficial for it to locate at the

edge when it has the the cost disadvantage. When c is not too small, the profit of firm 1 locating

at the edge becomes small, and the difference in its profit between locating at the center and at

the edge becomes small. It reduces the benefit of firm 1 locating at the edge, and firm 1 also

chooses the central location. Suppose that firm 2 moves from the central point to the other edge.

The move increases the difference between firm 1’s profit locating at the center and that locating

at the edge; resulting in the increase in the benefit for locating at the edge. Therefore, firm 1

prefers the edge (center) if its rival also chooses the edge (center).
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4 Welfare

In this section, we briefly make a welfare comparison between minimum and maximum product

differentiation. Without loss of generality, we assume l1 ≤ l2. Social surplus W is given by

W = s− c1D1 − c2(1 −D1) − t
(∫ D1

0
(y − l1)2dy +

∫ 1

D1

(y − l2)2dy
)

= s− c1D1 − c2(1 −D1) − t
(
(l2 − l1)D2

1 + (l21 − l22)D1 +
1
3
− l2 + l22

)
. (7)

Following two propositions state that each firm’s incentive for central agglomeration is insufficient

from the viewpoint of social welfare, while it is excessive from the viewpoint of total profits of

firms.

Proposition 4 The expected total social surplus is larger in minimum differentiation than in

maximum differentiation.

Proposition 5 (i) The expected total profit at maximum differentiation is larger than or equal

to that at minimum differentiation and (ii) it is strictly larger if and only if c < 3t.

If c > c̄, the equilibrium outcome is the minimum differentiation while the joint profits are

larger at the maximum differentiation. This indicates that firms are faced with a “prisoners’

dilemma”. Both firms prefer maximum differentiation to minimum differentiation, but each firm

has an incentive for reducing product differentiation by choosing the central location, which

results in the reduction of total profits. Furthermore, Proposition 4 indicates that such a com-

petition is beneficial from the viewpoint of social surplus. Central agglomeration increases the

supply of the more efficient firm and reduces the total production costs.4

4 Although welfare-improving production substitution is rarely discussed in the context of a location-price

model, some works discuss it in completely different contexts. See Lahiri and Ono (1988) in the context of the

Cournot competition, Riordan (1998) in the context of vertical foreclosure, Matsumura (1998) in the context of

mixed markets, and Ono (1990) Lahiri and Ono (1998) in the context of international trade and direct investment.
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5 Concluding remarks

In the paper, we introduce a cost uncertainty into the Hotelling model. We assume that each

firm chooses its location before observing its own and the rival’s costs and chooses its price after

observing them. We think that this situation is realistic. For example, consider the fluctuation of

foreign exchange rates. It is natural to assume that it is difficult for a firm to change its product

responding to changes in the exchange rate, while it is relatively easy for a firm to change its

price responding to the exchange rate.

In the model, we find that the significant cost heterogeneity yields minimum product differ-

entiation. Firms are faced with a severe Bertrand competition, and, with a positive probability,

neither firm will make a profit. If they produce differentiated goods products, they will always

make a profit. Nevertheless, they dare to produce homogeneous products because the winner

obtains large profits with a positive probability.

Next, we find that if the cost uncertainty is insignificant, the equilibrium outcome is the

maximum differentiation. If the cost uncertainty lies in the middle range, both minimum and

maximum differentiation become equilibrium location patterns (multiple equilibria). We also

find that each firm’s incentive for central agglomeration is insufficient from the viewpoint of

social welfare, while it is excessive from the viewpoint of joint-profit maximization.

Finally, we make a remark on the robustness of our results. In this paper we assume that

the correlation between two firms is zero. If it is negative (positive), c decreases (increases). In

other words, the minimum (maximum) differentiation appears in equilibrium more easily under

negative (positive) correlation. If the costs of the firms are perfectly correlated, no ex post

heterogeneity between firms exists, and minimum differentiation never appears in equilibrium.

Using the model, we might be able to investigate the relation between strategies of prod-

uct differentiation and cost-reducing R&D investments. We think that the result of the paper

presents a hint to consider the relation which is a considerable future research.
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Appendix

Proof of Lemma 1 (i): We suppose that l1 ≤ l2. The quantity supplied by firm 1, D1, is

D1(p1, p2, l1, l2) = min{max(x, 0), 1}, where x =
l1 + l2

2
+

p2 − p1

2t(l2 − l1)
. (8)

Given the locations of the firms, the first order derivatives are:

∂π1

∂p1
=

c1 + p2 − 2p1 + t(l2 − l1)(l2 + l1)
2t(l2 − l1)

,

∂π2

∂p2
=

c2 + p1 − 2p2 + t(l2 − l1)(2 − l1 − l2)
2t(l2 − l1)

.

D1 = 1 if and only if the following conditions are satisfied:

p1 = c2 − t(l2 − l1)(2 − l1 − l2), p2 = c2, (9)

∂π1

∂p1

∣∣∣∣
p1=c2−t(l2−l1)(2−l1−l2), p2=c2

≤ 0,
∂π2

∂p2

∣∣∣∣
p1=c2−t(l2−l1)(2−l1−l2), p2=c2

≤ 0,

⇔ c1 + c2 − 2(c2 − t(l2 − l1)(2 − l1 − l2)) + t(l2 − l1)(l2 + l1)
2t(l2 − l1)

≤ 0, (10)

c2 + c2 − t(l2 − l1)(2 − l1 − l2) − 2c2 + t(l2 − l1)(2 − l1 − l2)
2t(l2 − l1)

≤ 0. (11)

p1 in (9) is the highest value for sustaining D1 = 1, given that p2 = c2. If the inequalities in (10)

and (11) are satisfied, none of the firms has an incentive to raise his price, that is, the prices

in (9) are an equilibrium outcome. The left-hand side in (11) is zero, so (11) is satisfied. From

(10), we have that D1 = 1 if and only if c2 − c1 ≥ t(l2 − l1)(4 − l1 − l2). Q.E.D.

Proof of Lemma 1 (ii): We suppose that l1 > l2. The quantity supplied by firm 1, D1, is

D1(p1, p2, l1, l2) = min{max(x, 0), 1}, where x =
2 − l1 − l2

2
+

p1 − p2

2t(l1 − l2)
. (12)

Given the locations of the firms, the first derivatives are:

∂π1

∂p1
=

c1 + p2 − 2p1 + t(l1 − l2)(2 − l2 − l1)
2t(l1 − l2)

,

∂π2

∂p2
=

c2 + p1 − 2p2 + t(l1 − l2)(l1 + l2)
2t(l1 − l2)

.
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D1 = 1 if and only if the conditions are satisfied:

p1 = c2 − t(l1 − l2)(l1 + l2), p2 = c2, (13)

∂π1

∂p1

∣∣∣∣
p1=c2−t(l1−l2)(l1+l2), p2=c2

≤ 0,
∂π2

∂p2

∣∣∣∣
p1=c2−t(l1−l2)(l1+l2), p2=c2

≤ 0,

⇔ c1 + c2 − 2(c2 − t(l1 − l2)(l1 + l2)) + t(l1 − l2)(2 − l2 − l1)
2t(l1 − l2)

≤ 0, (14)

c2 + c2 − t(l1 − l2)(l1 + l2) − 2c2 + t(l1 − l2)(l1 + l2)
2t(l1 − l2)

≤ 0. (15)

p1 in (13) is the highest value for sustaining D1 = 1, given that p2 = c2. If the inequalities in

(14) and (15) are satisfied, none of the firms has an incentive to raise its price, that is, the prices

in (13) are an equilibrium outcome. The left-hand side in (15) is zero, so it is satisfied. From

(14) we have that D1 = 1 if and only if c2 − c1 ≥ t(l1 − l2)(2 + l1 + l2). Q.E.D.

Proof of Proposition 1: Suppose that the strategy of firm 2 is l2 = 1/2 in the first stage.

We show that the best response of firm 1 is choosing l1 = 1/2 if and only if c ≥ (9 − √
31)t/4.

Because of the symmetry of the linear city, we assume l1 ∈ [0, 1/2] without loss of generality.

In the first stage, each firm takes into account the following four possibilities; c1 = c2 = 0,

c1 = c2 = c, c1 = 0 and c2 = c, and c1 = c and c2 = 0. When c1 = c2, the profit of firm 1 is given

by (6). To obtain the expected profit of firm 1, we must consider what happens when c1 �= c2.

As we can see from Lemma 1, we must consider whether or not the following two inequalities

are satisfied (note that we now consider the case in which the strategy of firm 2 is l2 = 1/2):

t(1/2 − l1)(7/2 − l1) ≤ c, (Lemma 1 (i)), (16)

t(1/2 − l1)(5/2 + l1) ≤ c, (Lemma 1 (ii)). (17)

The inequality in (16) is the condition that the quantity supplied by firm 1 is 1, if c1 < c2. The

inequality in (17) is the condition that the quantity supplied by firm 1 is 0, if c2 < c1.

The inequality in (16) is satisfied if and only if

2 −
√

9
4

+
c

t
≤ l1 ≤ 2 +

√
9
4

+
c

t
. (18)

14



The inequality in (17) is always satisfied regardless of l1 if c > 9t/4. Otherwise, it is satisfied if

and only if

l1 ≤ −1 −
√

9
4
− c

t
(< 0), or − 1 +

√
9
4
− c

t
≤ l1. (19)

From inequalities in (18) and (19), we have that both inequalities in (16) and (17) are satisfied

for all l1 ∈ [0, 1/2] if c ≥ 7t/4.

First, we assume that c < 7t/4. Since 0 ≤ l1 ≤ 1/2, t(1/2−l1)(5/2+l1) < t(1/2−l1)(7/2−l1).
Thus, if the inequality in (16) holds, the inequality in (17) is also satisfied. From (18) and (19),

we divide the range of l1 ∈ [0, 1/2] into the following three segments:5 (i) l1 ∈ [2 −
√

9
4 + c

t ,
1
2 ]

(both (16) and (17) are satisfied), (ii) l1 ∈ (max{0,−1 +
√

9
4 − c

t}, 2 −
√

9
4 + c

t ) (only (17) is

satisfied), and (iii) l1 ∈ [0,max{0,−1 +
√

9
4 − c

t}]. (neither (16) nor (17) is satisfied).

(i) l1 ∈
[
2 −

√
9
4 + c

t ,
1
2

]
: the inequalities in (16) and (17) are satisfied.

Since 2 −
√

9
4 + c

t < 1/2, range (i) is never empty. We show that for this range optimal

location of firm 1 is 1/2. Under these conditions, from (16), we have that D1 = 1 when c1 < c2.

From (17), we have that D1 = 0 when c1 > c2. Thus, the expected profit of firm 1 is given by

E[Π1(l1, l2)] =
1
4
× t(l2 − l1)(2 + l1 + l2)2

18
+

1
4
× t(l2 − l1)(2 + l1 + l2)2

18

+
1
4
× (c− t(l2 − l1)(2 − l1 − l2)). (20)

The first and the second terms are the expected profits in which both firms’ costs are the same.

The third term is the expected profit in which c1 = 0 and c2 = c. Substituting l2 = 1/2 into

E[Π1(l1, l2)] in (20) and differentiating it with respect to l1, we have

∂E[Π1(l1, 1/2)]
∂l1

=
t(1 − 2l1)(19 + 2l1)

48
≥ 0, (21)

for any l1 belonging to this range and the equality holds only when l1 = 1/2. Thus l1 = 1/2 is

the best for this range.
5 We need not care about where each boundary of these three ranges belongs to, because the profit function is

continiuous.
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(ii) l1 ∈
(
max{0,−1 +

√
9
4 − c

t}, 2 −
√

9
4 + c

t

)
: the inequality in (17) holds but the inequality

in (16) is not satisfied.

Since c ≤ 7t/4, 2−
√

9
4 + c

t > 0. We show that the optimal l1 never lies in this range. Under

these conditions, from (16), we have D1 < 1 even if c1 < c2 = c. From (17), D1 = 0 if c1 > c2.

Then the expected profit of firm 1 is given by

E[Π1(l1, l2)] =
1
4
× t(l2 − l1)(2 + l1 + l2)2

18
+

1
4
× t(l2 − l1)(2 + l1 + l2)2

18

+
1
4
× (c+ t(l2 − l1)(2 + l1 + l2))2

18t(l2 − l1)
. (22)

The first and the second terms are the expected profits in which both firms’ costs are the same.

The third term is the expected profit in which c1 = 0 and c2 = c. Substituting l2 = 1/2 into

E[Π1(l1, l2)] in (22) and differentiating it with respect to l1, we have

∂E[Π1(l1, 1/2)]
∂l1

=
φ(l1)

288t(1 − 2l1)2
, (23)

where φ(l1) ≡ 16c2 + 8ct(1− 2l1)2 − 9t2(1− 2l1)2(1 + 2l1)(5 + 2l1). Differentiating φ(l1), we have

φ′(l1) = 8t(1 − 2l1)(9t− 4c+ 72tl1 + 36tl21) > 0, (24)

since we assume that c < 7t/4 and that 0 < l1 < 1/2 for range (ii). Therefore, one of the

following three conditions must be satisfied. (a) φ ≤ 0 for all l1 in range (ii), (b) φ < 0 if and

only if l1 < l̃1, where l1 < l̃1 is derived from φ(l̃1) = 0, or (c) φ ≥ 0 for all l1 in range (ii). In

case (a), the expected profit of firm 1 is non-increasing in l1, in case (b), it is U-shaped, and

in case (c), it is non-decreasing in l1. In all cases, l1 lying on range (ii) is dominated by either

l1 = max{0,−1+
√

9
4 − c

t} or l1 = 2−
√

9
4 + c

t , since E[Π1(l1, 1/2)] is continuous and maximized

at one of the corners.

(iii) l1 ∈
[
0,max{0,−1 +

√
9
4 − c

t}
]
: neither of the inequalities in (16) and (17) holds.

We show that l1 = 0 is best for firm 1 in range (iii). If −1 +
√

9
4 − c

t ≤ 0, it is obvious since

no other alternative exists for this range. We assume that −1+
√

9
4 − c

t > 0 (c < 5t/4) and show
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that the optimal l1 is 0. From (16), we have D1 < 1 when c1 < c2. From (17), D1 > 0 when

c1 > c2. The expected profit of firm i is given by

E[Π1(l1, l2)] =
1
4
× t(l2 − l1)(2 + l1 + l2)2

18
+

1
4
× t(l2 − l1)(2 + l1 + l2)2

18

+
1
4
× (c+ t(l2 − l1)(2 + l1 + l2))2

18t(l2 − l1)
+

1
4
× (t(l2 − l1)(2 + l1 + l2) − c)2

18t(l2 − l1)
. (25)

The first and the second terms are the expected profits in which both firms’ costs are the same.

The third term is the expected profit in which c1 = 0 and c2 = c. The fourth term is the

expected profit in which c1 = c and c2 = 0. Substituting l2 = 1/2 into E[Π1(l1, l2)] in (25) and

differentiating it with respect to l1, we have

∂E[Π1(l1, 1/2)]
∂l1

=
ψ(l1)

72t(1 − 2l1)2
, (26)

where ψ(l1) ≡ 8c2 − 3t2(1 − 2l1)2(1 + 2l1)(5 + 2l1). Differentiating ψ(l1), we have

ψ′(l1) = 24t2(1 − 2l1)(1 + 8l1 + 4l21) ≥ 0. (27)

Substituting l1 = −1+
√

9/4 − c/t (the right corner of range (iii)) into ψ(l1), we have (note that

we have assumed −1 +
√

9/4 − c/t > 0 (c < 5t/4)):

ψ

(
−1 +

√
9/4 − c/t

)
= 4(2c(18t− 5c) − 12c

√
t(9t− 4c)) < 0. (28)

Therefore, ψ(l1) < 0 for all l1 lying on range (iii). This implies that expected profit of firm 1 is

decreasing in l1.

From the above discussions for the three ranges, we have that either l1 = 1/2 or l1 = 0 is

best reply of firm 1. The best response of firm 1 is l1 = 1/2 if and only if E[Π1(1/2, 1/2)] ≥
E[Π1(0, 1/2)]. The condition is

c

4
− 8c2 + 25t2

144t
≥ 0 ⇔ c ≥ (9 −√

31)t
4

∼ 0.858t.

Next, we assume that 7t/4 ≤ c. In this case, as mentioned above, both inequalities in (16)

and (17) are satisfied for all l1 ∈ [0, 1/2]. And from exactly the same discussion in range (i)

above, we have that the firm 1’s payoff is increasing in l1 for l1 ∈ [0, 1/2). Thus firm 1’s best

reply is l1 = 1/2. Q.E.D.
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Proof of Proposition 2: The structure of the proof of Proposition 2 is almost the same as

Proposition 1. However, the proof is a little bit complicated because in the proof of Proposition

1 we can restrict l1 ∈ [0, 1/2] by symmetry, while we must consider l1 ∈ [0, 1] in this proof. Since

the proof is complicated, we use six supplementary lemmas in the proof.

Suppose that the strategy of firm 2 is l2 = 1 in the first stage. When c1 = c2, the profit of

firm 1 is given by (6). To obtain the expected profit of firm 1, we must consider what happens

when c1 �= c2. As we can see from Lemma 1, we must consider whether or not the following two

inequalities are satisfied (note that we now consider the case in which the strategy of firm 2 is

l2 = 1):

t(1 − l1)(3 − l1) ≤ c, (Lemma 1 (i)), (29)

t(1 − l1)(3 + l1) ≤ c, (Lemma 1 (ii)). (30)

The inequality in (29) is the condition under which the quantity supplied by firm 1 is 1 when

c1 < c2. The inequality in (30) is the condition that the quantity supplied by firm 1 is 0 when

c2 < c1.

Since 0 ≤ l1 ≤ 1, t(1 − l1)(3 − l1) < t(1 − l1)(3 + l1). If the inequality in (30) holds, the

inequality in (29) also holds. The inequality in (29) holds if and only if

2 −
√

1 +
c

t
≤ l1 ≤ 2 +

√
1 +

c

t
. (31)

The inequality in (30) is always satisfied regardless of l1 if c > 4t. If c ≤ 4t, the inequality in

(30) holds if and only if

l1 ≤ −1 −
√

4 − c

t
, or − 1 +

√
4 − c

t
≤ l1. (32)

The first inequality in (32) is never satisfied since l1 ≥ 0. Thus we can ignore it. From the

inequalities in (32) and (31), we have that both inequalities in (29) and (30) are satisfied for all

l1 ∈ [0, 1] if c ≥ 3t.

We now show that the best response of firm 1 is l1 = 0 if c ≤ t(81−
√

3(1928
√

241 − 29269))/18 ∼
2.025t.
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First, we consider the cases in which c < 3t. Since c < 3t, 2 −
√

1 + c
t < −1 +

√
4 − c

t .

From (32) and (31), we divide the range of l1 ∈ [0, 1] into the following three segments: (i-2)

l1 ∈
(
−1 +

√
4 − c

t , 1
]

(both (29) and (30) are satisfied); (ii-2) l1 ∈
(
2 −

√
1 + c

t ,−1 +
√

4 − c
t

)
(only (30) is satisfied); and (iii-2) l1 ∈

[
0, 2 −

√
1 + c

t

]
(neither (29) nor (30) is satisfied).

We now present three Lemmas showing the optimal location of firm 1 for each of three range

above.

Lemma A1: Suppose that l2 = 1. Suppose that c < 3t. (i) Among l1 lying on the range (i-

2), l1 =
√

241−14
3 maximizes the expected profit of firm 1, if c ≥ 2(11

√
241 − 163)t/9 ∼ 1.726t;

and (ii) the expected profit of firm 1 is decreasing in l1 for all l1 belonging to the range (i-2) if

c < 2(11
√

241 − 163)t/9 ∼ 1.726t.

Proof: Since −1+
√

4 − c
t < 1, the range (i-2) is never empty. From (29), we have that D1 = 1

when c1 < c2. From (30), we have that D1 = 0 when c2 < c1. Thus, the expected profit of firm

1 is given by

E[Π1(l1, l2)] =
1
4
× t(l2 − l1)(2 + l1 + l2)2

18
+

1
4
× t(l2 − l1)(2 + l1 + l2)2

18

+
1
4
× (c− t(l2 − l1)(2 − l1 − l2)). (33)

The first and the second terms are the expected profits in which both firms’ costs are the same.

The third term is the expected profit in which c1 = 0 and c2 = c. Substituting l2 = 1 into

E[Π1(l1, l2)] in (33) and differentiating it with respect to l1, we have

∂E[Π1(l1, 1)]
∂l1

=
t(15 − 28l1 − 3l21)

36
. (34)

We find that

∂E[Π1(l1, 1)]
∂l1

= (>,<)0 ⇔ l1 = (<,>)
√

241 − 14
3

∼ 0.5081. (35)

If c ≥ 2(11
√

241 − 163)t/9 ∼ 1.726t, then
√

241−14
3 ≥ −1 +

√
4 − c/t (the left corner of the

range (i-2)). Therefore, if c ≥ 2(11
√

241 − 163)t/9, l1 =
√

241−14
3 is the best response of firm 1.

Otherwise, the expected profit is decreasing in l1 for this range (so l1 = −1 +
√

4 − c/t is firm
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1’s best response). Q.E.D.

Lemma A2: Suppose that l2 = 1. Suppose that c < 3t. (i) the expected profit of firm 1 is

non-increasing in l1 for all l1 belonging to the range (ii-2) if c ≤ 2(491−26
√

331)t
25 ∼ 1.438t; (ii)

among l1 lying on the range (ii-2), neither of the two corners of this range maximizes the expected

profit of firm 1, if 2(491−26
√

331)t
25 < c < 2(11

√
241−163)t
9 ; and (iii) The expected profit of firm 1 is

non-decreasing in l1 for all l1 belonging to the range (ii-2) if c ≥ 2(11
√

241−163)t
9 ∼ 1.726t.

Proof: From (29), we have that D1 = 1 when c1 < c2. From (30), we have that D1 > 0 when

c2 < c1. Thus, the expected profit of firm 1 is given by

E[Π1(l1, l2)] =
1
4
× t(l2 − l1)(2 + l1 + l2)2

18
+

1
4
× t(l2 − l1)(2 + l1 + l2)2

18

+
1
4
× (c− t(l2 − l1)(2 − l1 − l2)) +

1
4
× (t(l2 − l1)(2 + l1 + l2) − c)2

18t(l2 − l1)
. (36)

The first and the second terms are the expected profits in which both firms’ costs are the same.

The third term is the expected profit in which c1 = 0 and c2 = c. The fourth term is the expected

profit in which c1 = c and c2 = 0. Substituting l2 = 1 into E[Π1(l1, l2)] in (36) and differentiating

it with respect to l1, we have

∂E[Π1(l1, 1)]
∂l1

=
c2 − 2ct(1 − l1)2 + 3t2(1 − l1)2(9 − 22l1 − 3l21)

72t(1 − l1)2
. (37)

We denote the numerator of the fraction as φ2(l1):

φ2(l1) ≡ c2 − 2ct(1 − l1)2 + 3t2(1 − l1)2(9 − 22l1 − 3l21). (38)

Note that the expected profit is decreasing (increasing) in l1 if φ2 is negative (positive).

Differentiating φ2(l1), we have

φ′2(l1) = 4t(1 − l1)(c− 30t+ 45tl1 + 9tl21). (39)

Differentiating φ′2(l1), we have

φ′′2(l1) = 4t(75t− c− 72tl1 − 27tl21). (40)
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φ′′2(l1) is decreasing in l1 ∈ [0, 1]. Since φ′2 is concave for this range, either of the two corners of

this range minimizes φ′2. Substituting l1 = 2−√1 + c/t and l1 = −1 +
√

4 − c/t (the corners of

the range) into φ′2(l1), we have:

φ′2
(

2 −
√

1 +
c

t

)
= 4(

√
t(t+ c) − t)(10c+ 105t− 81

√
t(c+ t)) ≥ 0, (41)

if and only if c ≤ 3(1487 − 27
√

2761)t
200

∼ 1.024t,

φ′2
(
−1 +

√
4 − c

t

)
= 4(2t−

√
t(4t− c))(27

√
t(4t− c) − 8c− 30t) ≥ 0, (42)

if and only if c ≤ 3(9
√

2713 − 403)t
128

∼ 1.542t.

First, we assume that c ≤ 3(1487−27
√

2761)t
200 ∼ 1.024t. Then φ′2 ≥ 0 for this range. Thus, the

right corner of this range maximizes φ2. Substituting l1 = 2−√1 + c/t and l1 = −1 +
√

4 − c/t

(the corners of the range) into φ2(l1), we have:

φ2

(
2 −

√
1 +

c

t

)
= 4(31c+ 126t)

√
t(c+ t) − 2(5c2 + 188ct+ 252t2) ≤ 0, (43)

if and only if c ≤ 2(491 − 26
√

331)t
25

∼ 1.438t,

φ2

(
−1 +

√
4 − c

t

)
= 2((16t− 3c)(36t+ c) − 2(144t− 5c)

√
t(4t− c)) ≤ 0, (44)

if and only if c ≤ 2(11
√

241 − 163)t
9

∼ 1.726t.

(43) and (44) imply that φ2 is negative since we assume that c ≤ 3(1487−27
√

2761)t
200 ∼ 1.024t(<

1.438t). Thus, the expected profit is decreasing in l1. Therefore, l1 = 2 − √
1 + c/t (the left

corner of the range) is the best response of firm 1.

Second, we assume that 3(1487−27
√

2761)t
200 < c ≤ 2(491−26

√
331)t

25 ∼ 1.438t. Substituting l1 =

−1 +
√

4 − c/t (the right corner of the range) into φ′′2(l1), we have:

φ′′2
(
−1 +

√
4 − c

t

)
= 8t(13c+ 6t− 9

√
t(4t− c)) > 0, (45)

if and only if c >
3(3

√
3097 − 79)t
338

∼ 0.781t.

Since φ′′2 is decreasing, it implies that φ′′2 is positive for this range. Note that we assume c >
3(1487−27

√
2761)t

200 ∼ 1.024t. Since φ2 is convex, either of the two corners maximizes φ2. (43) and
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(44) imply that φ2 is negative for the range (ii-2). Thus, the expected profit is decreasing in l1.

Therefore, l1 = 2 −√1 + c/t (the left corner of the range) is the best response of firm 1.

Third, we assume that 2(491−26
√

331)t
25 ∼ 1.438t < c ≤ 2(11

√
241−163)t
9 ∼ 1.726t. As we show in

the previous paragraph, φ2 is convex. Since φ2 is positive at the left corner of the range (ii-2)

and it is negative at the right corner of the range (ii-2), there is an l1 satisfying φ2 = 0, and

it maximizes the expected profit of firm 1. Let the above maximizer be l̄1. For this range (ii-2)

l1 = l̄1 is firm 1’s best reply.

Fourth, we assume that 2(11
√

241−163)t
9 ∼ 1.726t ≤ c. Since φ′′2 > 0, φ′2 is increasing. Since φ′2

is non-positive at the right corner, φ′2 is always non-positive. Thus, the right corner minimizes

φ2. (44) implies that φ2 is always non-negative, so the expected profit of firm 1 is non-decreasing.

Therefore, l1 = −1 +
√

4 − c/t (the right corner) is the best response of firm 1.

We summarize the best response of firm 1 for the range (ii-2). If c ≤ 2(491−26
√

331)t
25 , the best

response is l1 = 2−√1 + c/t; if 2(491−26
√

331)t
25 < c < 2(11

√
241−163)t
9 , it is l̄1; and if 2(11

√
241−163)t
9 ≤

c, it is l1 = −1 +
√

4 − c/t. Q.E.D.

Lemma A3: Suppose that l2 = 1. Suppose that c < 3t. The expected profit of firm 1 is non-

increasing in l1 for all l1 belonging to the range (iii-2) if c ≤ √
6t ∼ 2.449t.

Proof: Since c < 3t and 0 < 2 −
√

1 + c
t , the range (iii-2) is never empty. From (29), we have

that D1 < 1 when c1 < c2. From (30), we have that D1 > 0 when c2 < c1. Thus, the expected

profit of firm 1 is given by

E[Π1(l1, l2)] =
1
4
× t(l2 − l1)(2 + l1 + l2)2

18
+

1
4
× t(l2 − l1)(2 + l1 + l2)2

18

+
1
4
× (c+ t(l2 − l1)(2 + l1 + l2))2

18t(l2 − l1)
+

1
4
× (t(l2 − l1)(2 + l1 + l2) − c)2

18t(l2 − l1)
. (46)

The first and the second terms are the expected profits in which both firms’ costs are the same.

The third term is the expected profit in which c1 = 0 and c2 = c. The fourth term is the expected

profit in which c1 = c and c2 = 0. Substituting l2 = 1 into E[Π1(l1, l2)] in (46) and differentiating

it with respect to l1, we have

∂E[Π1(l1, 1)]
∂l1

=
ψ2(l1)

36t(1 − l1)2
, (47)
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where ψ2(l1) ≡ c2 −2t2(1− l1)2(3+ l1)(1+3l1). We now show that ψ2(l1) ≤ 0 for all l1 belonging

to the range (iii-2). Differentiating ψ2(l1), we have

ψ′
2(l1) = 8t2(1 − l1)(−1 + 6l1 + 3l21) < 0, if and only if l1 <

2
√

3 − 3
3

. (48)

(48) implies that either of the two corners (l1 = 0 or l1 = 2−√1 + c/t) maximizes ψ2. ψ2(0) ≤ 0

if c ≤ √
6t ∼ 2.449t. Substituting l1 = 2 −√1 + c/t into ψ2(l1), we have

ψ2

(
2 −

√
1 +

c

t

)
= −(5c2 + 176ct+ 240t2) + 8(7c+ 30t)

√
t(t+ c) ≤ 0, (49)

if and only if c ≤ 4(172 − 23
√

46)t
25

∼ 2.561t. (50)

Thus, ψ2(l1) ≤ 0 if c ≤ √
6. Q.E.D.

We now consider the optimal location of firm 1 for the whole range, i.e., [0,1].

Lemma A4: Suppose that l2 = 1. Suppose that c < 3t. Suppose that

c > t
18

(
81 −

√
3(1928

√
241 − 29269)

)
∼ 2.025t. Then l1 = 0 never maximizes the expected profit

of firm 1.

Proof: From Lemmas A1–A3, we have that the expected profit of firm 1 is locally maximized

when l1 =
√

241−14
3 . If E[Π1(

√
241−14

3 , 1)] > E[Π1(0, 1)], l1 = 0 does not maximize the expected

profit of firm 1. The condition is

(482
√

241 − 7378)t+ 243c
972

− c2 + 18t2

36t
> 0

⇔ c >
t

18

(
81 −

√
3(1928

√
241 − 29269)

)
∼ 2.025t. (51)

Q.E.D.

Lemma A5: Suppose that l2 = 1. Suppose that c < 3t. Suppose that

c ≤ t
18

(
81 −

√
3(1928

√
241 − 29269)

)
∼ 2.025t. Then l1 = 0 maximizes the expected profit of

firm 1.

Proof: Suppose that c ≤ 2(491−26
√

331)t
25 ∼ 1.438t. From Lemmas A1–A3 we have that the

expected profit of firm 1 is non-increasing in l1 for all l1 ∈ [0, 1], so the maximizer is l1 = 0. Note

that the expected profit is continuous with respect to l1.
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Suppose that t
18

(
81 −

√
3(1928

√
241 − 29269)

)
∼ 2.025t ≥ c ≥ 2(11

√
241−163)t
9 ∼ 1.726t.

From Lemmas A1–A3 we have that the expected profit of firm 1 is locally maximized when

l1 = 0 and when l1 =
√

241−14
3 . Note that the expected profit is continuous with respect to l1.

From (51), we have that the profit is larger when l1 = 0 than when l1 =
√

241−14
3 .

Suppose that 2(11
√

241−163)t
9 ∼ 1.726t > c > 2(491−26

√
331)t

25 ∼ 1.438t. From Lemmas A1–A3

we have that the expected profit of firm 1 is locally maximized when l1 = 0 and when l1 = l̄1,

where l̄1 is defined in the proof of Lemma A2. We show that the expected profit is larger when

l1 = 0 than when l1 = l̄1.

From E[Π1(l1, 1)] in (36), we have the second, the third, and the fourth derivatives:

∂2E[Π1(l1, 1)]
∂l21

=
c2 − 3t2(1 − l1)3(11 + 3l1)

36t(1 − l1)3
, (52)

∂3E[Π1(l1, 1)]
∂l31

=
c2 − 3t2(1 − l1)4

12t(1 − l1)4
, (53)

∂4E[Π1(l1, 1)]
∂l41

=
c2

3t(1 − l1)5
> 0. (54)

(54) implies that (53) is increasing in l1. We show that (53) is positive for all l1 belonging to the

range (ii-2). Substituting l1 = 2 −√1 + c/t (the left corner of range (ii-2)) into (53), we have

∂3E[Π1(l1, 1)]
∂l31

∣∣∣∣∣
l1=2−√1+ c

t

=
t3
(
6(2t+ c)

√
t(t+ c) − (12t2 + 12ct+ c2)

)
6(
√
t(c+ t) − t)4

. (55)

Since (6(2t+c)
√
t(t+ c))2−((12t2+12ct+c2))2 = c2(12t2+12ct−c2) > 0, (55) is positive. Thus

(55) is positive for any l1 lying on ragne (ii-2). Since (53) is positive, (52) is increasing in l1. We

show that (52) is negative for all l1 belonging to the range (ii-2). Substituting l1 = −1+
√

4 − c/t

(the right corner of range (ii-2)) into the numerator of (52), we have

c2 − 3t2
(

1 − −t+
√
t(4t− c)
t

)3(
11 + 3

−t+
√
t(4t− c)
t

)

= 2(3(16t+ 5c)
√
t(4t− c) − (96t2 + 18ct− 5c2)).

Since
(
3(16t+ 5c)

√
t(4t− c)

)2 − (
96t2 + 18ct− 5c2

)2 = −c2(25c2 + 45ct − 96t2) < 0, (52) is
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negative. Since the expected profit of firm 1 is concave, the following inequality holds:

E[Π1(l̄1, 1)] = E

[
Π1

(
2 −

√
1 +

c

t
, 1
)]

+
∫ l̄1

2−
√

1+c/t

∂E[Π1(l1, 1)]
∂l1

dl1

< E

[
Π1

(
2 −

√
1 +

c

t
, 1
)]

+
(
−1 +

√
4 − c

t
−
(

2 −
√

1 +
c

t

))
∂E[Π1(l1, 1)]

∂l1

∣∣∣∣
l1=2−√1+ c

t

≡ H.

If H < E[Π1(0, 1)], for any c ∈ [1.438t, 1.726t], l1 = l̄1 is not the best response of firm 1.

E[Π1(0, 1)] −H =
c2 + 18t2

36t
−
(
E

[
Π1

(
2 −

√
1 +

c

t
, 1
)]

+
(
−1 +

√
4 − c

t
−
(

2 −
√

1 +
c

t

)) ∂E[Π1(2 −
√

1 + c
t , 1)]

∂l1




=
2t3(342t+ 127c)

√
t(c+ t) + t2(252t2 + 188tc+ 5c2)

√
t(4t− c)

36t2(
√
t(c+ t) − t)2

−t
2(684t3 + 596t2c+ 48tc2 − c3) + 2t2(126t+ 31c)

√
t(c+ t)

√
t(4t− c)

36t2(
√
t(c+ t) − t)2

,

=
Ha −Hb

36t2(
√
t(c+ t) − t)2

,

where Ha≡ 2t3(342t+ 127c)
√
t(c+ t) + t2(252t2 + 188tc+ 5c2)

√
t(4t− c),

Hb ≡ t2(684t3 + 596t2c+ 48tc2 − c3) + 2t2(126t+ 31c)
√
t(c+ t)

√
t(4t− c).

Ha > 0 and Hb > 0. We square Ha and Hb:

H2
a = t5(721872t5 + 1130832t4c+ 468692t3c2 + 34172t2c3 − 1780tc4 − 25c5)

+4t5(342t+ 127c)(252t2 + 188tc+ 5c2)
√
t(t+ c)

√
t(4t− c), (56)

H2
b = t4(721872t6 + 1130832t5c+ 466496t4c2 + 36132t3c3 − 2732t2c4 − 96tc5 + c6)

+4t4(126t+ 31c)(684t3 + 596t2c+ 48tc2 − c3)
√
t(t+ c)

√
t(4t− c). (57)

If H2
a −H2

b > 0, then E[Π1(0, 1)] −H > 0.

H2
a −H2

b = t4c2(2196t4 − 1960t3c+ 952t2c2 + 71tc3 − c4)

−4t4c2(−1062t2 + 727tc− 31c2)
√
t(t+ c)

√
t(4t− c) = Hc −Hd,
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where Hc ≡ t4c2(2196t4 − 1960t3c+ 952t2c2 + 71tc3 − c4),

Hd≡ 4t4c2(−1062t2 + 727tc− 31c2)
√
t(t+ c)

√
t(4t− c).

Hc > 0 and Hd > 0 (note that, c ∈ [1.438t, 1.726t]). If H2
c − H2

d > 0, then H2
a − H2

b > 0, so

E[Π1(0, 1)] −H > 0. We now show H2
c −H2

d > 0. H2
c −H2

d = t8c4(3t− c)(g(c)), where

g(c) ≡ −22453200t7 + 4542480t6c+ 22230000t5c2 − 10513848t4c3

+573920t3c4 − 18096t2c5 + 139tc6 − c7.

Differentiating g(c), we have (note that, c ∈ [1.438t, 1.726t])

g′(c) = 4542480t6 + 44460000t5c− 31541544t4c2 + 2295680t3c3 − 90480t2c4 + 834tc5 − 7c6,

g′′(c) = 6(7410000t5 − 10513848t4c+ 1147840t3c2 − 60320t2c3 + 695tc4 − 7c5),

g(3)(c) = −6(10513848t4 − 2295680t3c+ 180960t2c2 − 2780tc3 + 35c4),

g(4)(c) = 120(114784t3 − 18096t2c+ 417tc2 − 7c3),

g(5)(c) = −360(6032t2 − 278tc+ 7c2),

g(6)(c) = 720(139t− 7c) > 0.

From the last inequality, we have that g(5)(c) is increasing. Substituting the right corner (c =

1.726t) into g(5)(c) yields g(5)(c) < 0, so g(4)(c) is decreasing. Substituting the left corner

(c = 1.438t) into g(4)(c) yields g(4)(c) > 0, so g(3)(c) is increasing. Substituting the right corner

into g(3)(c) yields g(3)(c) < 0, so g(2)(c) is decreasing. Substituting the right corner into g′′(c)

yields g(2)(c) < 0. Since g is concave, either of the two corners minimizes g. Substituting both

corners into g(c), we have that g(c) > 0. Q.E.D.

Next, we consider the cases in which c > 3t.

Lemma A6: Suppose that l2 = 1. Suppose that c ≥ 3t. l1 = 0 never maximizes the expected

profit of firm 1.

Proof: As we have already showed, both (29) and (30) are satisfied. The expected profit is

always given by (33). Thus, (51) holds true for c ≥ 3t, too. (51) implies that Lemma A6 holds.

Q.E.D.
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Finally we prove Proposition 2.

Lemma A4 and A6 imply the only if part of Proposition 2. Lemma A5 implies the if part of

Proposition 2. Q.E.D.

Proof of Proposition 4: In the model, there are four possible patterns of cost allocations:

(i) c1 = c2 = 0, (ii) c1 = c2 = c, (iii) c1 = 0 and c2 = c, and (iv) c1 = c and c2 = 0.

When each firm locates at l1 = l2 = 1/2, the most efficient firm supplies for all consumers in

any case. The transportation costs of consumers are

∫ 1
2

0
t(1/2 − x)2dx+

∫ 1

1
2

t(x− 1/2)2dx =
t

12
.

When each firm locates at l1 = 0 and l2 = 1, the less efficient firm may supply for some

consumers in cases (iii) and (iv). The quantity supplied by the more efficient firm is larger than

1/2. The transportation costs of consumers are

∫ D1

0
tx2dx+

∫ 1

D1

t(1 − x)2dx =
t(1 − 3D1 + 3D2

1)
3

=
t(1/4 + (D1 − 1/2)2)

3
>

t

12
.

In any case, total surplus in the minimum differentiation is larger than or equal to that in

the maximum differentiation. Therefore, Proposition 4 holds. Q.E.D.

Proof of Proposition 5: We first consider the profits in which both firms locate at l1 = l2 =

1/2. In the case, unless a firm has the cost advantage, the profit of the firm is zero. If the firm

has the cost advantage, the profit is c. From (20), the expected profit is

E[π1(1/2, 1/2)] = E[π2(1/2, 1/2)] =
c

4
. (58)

We consider the profits in which each firm locates at l1 = 0 and l2 = 1. If c < 3t, each firm has

a positive profit in any case. From (46), the expected profit is

E[Π1(0, 1)] = E[Π2(0, 1)] =
1
4
× t

2
+

1
4
× t

2
+

1
4
× (c+ 3t)2

18t
+

1
4
× (3t− c)2

18t
=
c2 + 18t2

36t
. (59)

Since (58) − (59) = (3t− c)(6t− c)/36t > 0 as long as c < 3t, the former part of Proposition 5

holds. When c ≥ 3t, a firm does not have a positive profit if it has the cost disadvantage. From
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(33), the expected profit is

E[Π1(0, 1)] = E[Π2(0, 1)] =
1
4
× t

2
+

1
4
× t

2
+

1
4
× (c− t) =

c

4
. (60)

(59) and (60) imply the latter part of Proposition 5. Q.E.D.
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